The team is dedicated to the synthetic development of new tools for analytical and imaging applications. We notably develop luminescent labels for microscopy imaging and bio-analytical applications such as luminescence based assays. The team has a strong background in synthetic organic chemistry applied to the design of lanthanide based luminescent labels. Thanks to the spectral and temporal signature of lanthanide elements, the probes have exceptional characteristics such as very long lived excited states, line-like emission spectra and large pseudo Stokes’ shift. The main scientific axes related to the project are the design of luminescent probes displaying upconversion at the molecular and supramolecular level and the optimization of lanthanide based nanoparticles for time-resolved luminescence microscopy. Regarding upconversion, our molecular approach is expected to remove the troubles associated with the use of nanoparticles (biotoxicity, reproducibility,…) while profiting from the spectroscopic advantages of the anti-Stokes process. For lanthanide based nanoparticles, the displacement of the excitation wavelength towards the visible region will provide strong perspectives for luminescence microscopy and flow cytometry. Our team is fully equipped for organic and inorganic synthesis as well as for the spectroscopic characterization of the luminescent objects with UV-Vis-NIR absorption spectrometers and UV-Vis-NIR emission spectroscopy (up to 1600 nm) in the steady-state and time-resolved modes.