The team is concerned with developing novel optical imaging methods using scattered light. This includes methods for deep imaging in the multiple scattering regime, super-resolution and non-linear coherent and incoherent microscopies.
Expertises of the Team:

  • Imaging in the multiple scattering regime
  • Super-resolution
  • Computational imaging for fluorescence and Raman

Our research aims at characterizing macromolecular complexes governing major biological processes, focusing on transcription regulation, signaling and remodeling of biological membranes. To achieve these goals, we develop, combine and use advanced single molecule biophysical methods (such as atomic force and fluorescence microscopies), as well as DNA nanotechnology.

Research:

Structure and dynamics of nucleoproteic and membrane assemblies

Structure and dynamics of membrane assemblies

PIBBS-MARS & AFM comprises two facilities :

  • The AFM facility is the only one in the FBI Infrastructure to provide access to state-of-the-art Atomic Force Microscopes, including a custom built high-speed AFM.
  • The MARS facility is devoted to cutting-edge optical microscopies such as Single Molecule Localization Microscopy, smFRET, PIE-FCCS, 2-photons FCS, single particle tracking, etc… The MARS R&D division, closely associated to two R&D teams, is in charge of implementing and developing new custom
    advanced microscopies (such as STED-FCCS, 2foci-FCS or multifocal microscopy) before their transfer to the facility.

Moreover, the AFM and MARS facilities and staff work closely together to develop and transfer new correlative imaging modalities, such as AFM / Superresolution or AFM / Confocal (FLIM, spFRET).

Users are assisted by dedicated research engineers and scientific coordinators to define the best approach, experimental design, help in data acquisition and analysis.

http://www.cbs.cnrs.fr/index.php/fr/fluorescence

Microscopy systems available @PIBBS

The Mosaic group of the Fresnel Institute headed by H. Rigneault has been involved for almost a decade in developing dedicated optical instruments for biological imaging. Among other, the team has developed together with CIML the “FCS diffusion law” approach in Fluorescence Correlation Spectroscopy that has been successfully applied to the cell membrane. More recently single particle tracking using multiple targets have proved to be powerful to distinguish confinement zone at the cell membrane and Holographic Optical Tweezers shows potential application into TCR/MHC control. Phase control for micro-manipulation and imaging is an active field of research at Mosaic. Since 2002, the Mosaic group has been involved in coherent Raman microscopy and nonlinear imaging and was the first in France to build and develop a CARS microscope. One of the group world recognized expertise is in polarization resolved fluorescence and nonlinear microscopy that has proved to be able to retrieve molecular order in cell and tissue imaging. The group is now also involved in the development of nonlinear imaging using endoscopes using innovative microstructured optical fibers. Another active field of research is fluorescence enhancement at the nanoscale using metallic nano-antenna that have the ability to perform dynamic analysis on time and spatial scales unreachable with far field optics.

ENS Chemistry facility gathers instruments devoted to the characterization and purification of optical probes and actuators by means of various spectrometries (UV-Vis absorption, fluorescence emission) and chromatographies (capillary electrophoresis, HPLC analytical or preparative), installed on 100 m² at ENS Chimie. Access is provided to external users with technical and conceptual assistance from the 8 permanent members involved in FBI. The originality of ENS Chimie is the close collaboration between the characterization facility making available established approaches to the biological community and a research team involved in the development of state of the art chemical technologies for the optical control and reading out of living systems. The ultimate goal is to provide access and training to these emerging techniques and methods for the realization of competitive biological projects.