List of facilities and R&D teams

Facility

UTechS UBI – Pasteur

↗ Website + Info

Facility: UTechS UBI – Pasteur

Head: Jacomine Krijnse-Locker

jacomina.krijnse-locker@pasteur.fr
Institut Pasteur 25-28 Rue du Docteur Roux 75724, Paris CEDEX 15

Member of C2RT (Center for Resources and Research in Technology) the Unit for service and technology in ultra-structural bio-imaging  (UBI) at Pasteur provides technical and scientific support in electron microscopy, mainly, but not exclusively, to the Pasteur community, analyzing host-pathogen interactions at the ultra-structural level. Our equipment enables us to do state-of-the-art EM for life sciences that includes three dimensional EM by tomography and focused ion beam SEM. The ultrapole is run by ten members (eight engineers and two technicians), each specialized in certain techniques. We put a big emphasis on correlate light- and electron microscopy to study key (rare events) of host-pathogen interactions and we have designed several protocols to combine room temperature LM and cryo-LM with FIB-SEM, cryo-SEM and cryo-tomography.

The UBI also has a small research group focusing on large DNA-viruses. Through this research theme we wish to establish and develop robust, new protocols for various EM-techniques.

Services on this Facility

Service

Microscopy Technologies

Facility

PICT-IBiSA Curie

↗ Website ↗ Service + Info

Facility: PICT-IBiSA Curie

Head: Olivier Renaud (PICT-LM) & Daniel Levy (PICT-EM)

Info.pict@curie.fr
Institut Curie - Pavillon Trouillet-Rossignol, Rue d'Ulm, 5e Arrondissement, France

The Cell and Tissue Imaging Platform (PICT-IBiSA) of the Institut Curie brings together advanced microscopy technologies. Its main objective is to provide researchers in cell biology, development, structural, chemistry and biophysics with imaging approaches at different spatial and dynamic scales ranging from the molecule, to the cell, to the organism in healthy or pathological contexts.

The platform is organized around 4 poles: photonic microscopy, high-content screening, electron microscopy, cryo-electron microscopy and ion microscopy. Photonic microscopy extends from dynamic imaging to high resolution. High throughput microscopy allows cellular screening of chemical and siRNA banks. Ion microscopy (NanoSIMS) provides chemical and isotopic maps of molecules in the cell. Electron microscopy and cryo-microscopy provide the molecular structure and cellular ultrastructure of biological samples. The platform also offers expertise in data processing and analysis.

Services on this Facility

Service

HCS & HTP facilities

Service

Image Data Handling

Service

Microscopy Technologies

Facility

Imagerie-Gif

↗ Website + Info

Facility: Imagerie-Gif

Head: Béatrice Satiat-Jeunemaitre

I2BC, Gif-sur-Yvette, France

The cell biology pole Imagerie-Gif is localized on the CNRS campus of Gif sur Yvette, in a new building dedicated to platform activity. This IBiSA platform provides efficient access to high quality services and state of the art technologies. It is open to the whole academic scientific community and to industrial partners. The management and development of this pole is under the responsibility of the team “Dynamics of cell compartmentation” (group leader B. Satiat-Jeunemaitre, Institut des Sciences du Végétal, Gif sur Yvette). It uses cell biology approaches and multiscale imaging (cytometry, bio-imaging and electron microscopy) to explore the cell. The development of new protocols and the mastering of update imaging approaches are part of the R & D objectives of the platform. Those are then transferred to platform services and disseminated through numerous training and teaching events, and opened to the whole scientific community. The cell biology pole of Imagerie-Gif activities contributes to the working groups “super resolution”, “Probe development” and “CLEM” within the France-BioImaging consortium.

Services on this Facility

Service

Microscopy Technologies

Facility

ImaChem – IBENS

↗ Website + Info

Facility: ImaChem – IBENS

Head: Laurent Bourdieu

École Normale Supérieure, Rue d'Ulm, Paris, France

The Imachem imaging platform provides advanced light and electronic microscopy techniques to IBENS researchers and external users. Imachem is operated by 5 engineers. The main originality of IMACHEM is its ability to undertake innovative technical developments in optical microscopy and to make them available to all users. The first expertise of the platform is super-resolution microscopy, with the development of 3D-PALM using adaptive optic methods. It can perform ultra-structural imaging and single-particle tracking in 3D with a few tens of nanometers of spatial resolution. The second expertise is ultrafast two-photon microscopy for in vivo functional recordings with a temporal resolution in the msec range. A two-photon microscope using acousto-optic scanners for 2D scanning was first designed and installed in the platform. A new system providing ultrafast 3D scanning is currently under development. Additionally, electron microscopy using high-pressure freezing will be developed for correlative light and EM imaging.

Services on this Facility

Service

Microscopy Technologies

Facility

Montpellier RIO Imaging

↗ Website + Info

Facility: Montpellier RIO Imaging

Scientific director: Patrick Lemaire

patrick.lemaire@crbm.cnrs.fr
Université Montpellier 1, Montpellier, France

Montpellier RIO Imaging (MRI) is a distributed imaging facility present on six sites in Montpellier (www.mri.cnrs.fr). MRI is labeled IBiSA and certified ISO9001-2008 LQRA. It has a staff of 30 engineers and is directed by E. Bertrand (CNRS, IGMM). MRI manages numerous microscopes (36 photonic and 2 electron microscopes) and 14 analysis workstations, and especially microscopes for long term or short live experiments. MRI offers a complete set of state-of-the-art technologies, from single molecule to small organism imaging. The platform offers and develops 3D-SIM, SPIM, FCS/FCCS, CLEM and 2photons microscopies, and also develops a new service of High Content Screening, with a specific emphasis on gene expression analysis by smFISH techniques. MRI organizes regular training sessions with theoretical presentations and practical sessions about advanced light microscopy and image analysis. Once trained, a user can freely access microscopes on a pay-per-use basis. For the screening facility, the access is evaluated on a project-by-project basis.

Services on this Facility

Service

Microscopy Technologies

Facility

BioEmergences

↗ Website + Info

Facility: BioEmergences

Head: Nadine Peyréras

Université Paris-Sud, Rue Georges Clemenceau, Orsay, France

 The BioEmergences platform (UPS in 2014) develops, applies to specific case studies, and offers as services, original methodologies and tools for the multi-scale phenomenological and theoretical reconstruction of the development of model organisms, animal or vegetal. The work is organized along the lines of an applied epistemology that we defined in the context of the Institute for Complex Systems which is part of the national and international roadmap established by the Complex Systems community http://roadmaps.csregistry.org/. We developed a workflow going from photonic microscopy for in vivo and in toto imaging of developing organisms to the automated reconstruction of 3D+time data, analysis of digital specimens and modeling of morphogenetic processes. In this context provide collaborative services that most of the time, correspond to new challenging applications (WP1b, WP1d, WP2, WP3). FBI funding is used to develop a so-called artificial assistant based on a SPIM or MLMS imaging concept with real time image processing and feedback on the imaging scheme. All our activity involves image processing (WP4), that’s why we are involved in IPDM node too. We expect to provide the community with original webservices to access the BioEmergences reconstruction workflow and grid computing.

Services on this Facility

Service

Image Data Handling

Service

Microscopy Technologies

Facility

PICsL (Shared Imaging Platform of Luminy Campus)

↗ Website + Info

Facility: PICsL (Shared Imaging Platform of Luminy Campus)

Head: Pierre-François Lenne

Faculté des Sciences de Luminy, Avenue de Luminy, Marseille, France

 PICsL has been founded in 2002 in the context of a partnership between CIML and IBDM. This technological facility has for main objective to give access to forefront technologies in cellular imaging to 45 research groups (500 scientists). The facility is located in the two institutes on the same campus and offers a variety of state-of-the art imaging systems (multiphoton, confocal imaging, electron microscopy). In addition, during the past years, specific R&D projects have been launched in research teams of the institutes, which now benefit to an increasing number of scientists. First built as collaborative projects between teams (e.g. H. Rigneault/D. Marguet, PF Lenne/T Lecuit), they have proven to be of general interest for a large community at local, national and international levels. Bringing these new technologies to a shared infrastructure in Marseilles has significantly enlarged the service offered to users.

Services on this Facility

Service

Microscopy Technologies

Facility

IPAM

↗ Website + Info

Facility: IPAM

Head: Chrystel Lafont and Pierre Fontanaud

Chrystel.lafont@igf.cnrs.fr and Pierre.Fontanaud@igf.cnrs.fr
Hôpital Arnaud-de-Villeneuve, Montpellier, France

IPAM is a platform for the investigation of small animals. IPAM platform is under ISO9001 certification (starting from June 2014) and a labeled IBiSA facility. IPAM is headed by P. Mollard (CNRS, IGF) and with help of C. Lafont (tech leader). IPAM-IGF is dedicated to cellular in vivo imaging techniques in both anesthetized and vigile animal models. Our latest development involves 2-photon cellular in vivo microscopy with long-range objectives (Mitutoyo, wd: 2cm, x20 magnification, NIR transmission) readily applicable to imaging of deep tissues structures (metabolic brain, pancreatic islets from animal models of diabetes) in anesthetized animal models. Access to IPAM-IGF equipment is based on project selection (http://www.ipam.cnrs.fr/), IPAM-IGF is also an international member of the National Biophotonics and Imaging Platform Ireland (NBIPI, http://www.nbipireland.ie/ ).

Services on this Facility

Service

Microscopy Technologies

Facility

MARS

↗ Website + Info

Facility: MARS

Head: Marcelo Nollmann

Hôpital Arnaud-de-Villeneuve, Montpellier, France

MARS is a research facility born from a collaboration between R&D groups at the CBS, and the PIBS, MRI and IPAM facilities. The main objective of MARS is to offer the scientific community access to a selection of advanced microscopy technologies, generally not commercially available. To achieve this aim, we implement in MARS state-of-the-art optical microscopy methods developed by R&D teams of the FBI node (Nollmann, Margeat, Milhiet, Mollard). MARS offers access, training, and support to several custom-made optical setups.

R&D Teams

Three R&D teams are part of the MARS facility to port their methodological developments. The group of Emmanuel Margeat develops single molecule FRET and fluctuation microscopies to investigate the structure, dynamics, and interactions of macromolecular complexes, with a specific focus on membrane receptors and transcription regulation. The team of Marcelo Nollmann (see Group website) specializes in the development and implementation of super-resolution and advanced microscopy methods to investigate DNA organization and remodeling. Specifically, the team has developed two-color ultra-stable PALM/STORM microscope (currently available at MARS), a 3D-PALM setup based on adaptive optics, and multi-focal plane microscopy. The group is currently working as well in the combination of these methods with structured illumination microscopies. Together with the group of Pierre-Emmanuel Milhiet, the team has recently developed a combo PALM/STORM/Atomic Force Microscopy.

Services on this Facility

Service

Microscopy Technologies

Facility

Institut Curie – Bioimage Informatics IPDM

↗ Website ↗ Service + Info

Facility: Institut Curie – Bioimage Informatics IPDM

Head: Perrine Paul-Gilloteaux

Institut Curie - Pavillon Trouillet-Rossignol, Rue d'Ulm, 5e Arrondissement, France

Institut Curie is active in image databases and management. The PICT imaging facility is engaged since 2011 with the Strand Life Sci. company in the development of the CID (Curie Image Database)/iManage (supported by Paris-Centre Node). The CID is linked to the “Curie Image Data center” (2x 100Tb Storage equipment and cluster for image processing and analysis). Since December 2013 CID is open to all FBI users of the PICT, under demand and common rules of imaging platforms (web client). iManage is the commercial version (with licensing), offering support to labs, to install and adapt CID on their own microscopy, at their own sites. Plugins to access the CID from Icy (Institut Pasteur) are developed and published on the central repository of Icy. An interface to interoperate with the servers at Institut Curie is under development. Integration of software developed in collaboration with Inria-Serpico (http://mobyleserpico.rennes.inria.fr/) such as ND-SAFIR, Hullkground are now integrated in the CID for automated treatment. Institut Curie, specifically with Serpico’s Team@Inria-Rennes, also develops new algorithm solutions for dynamic events detection and classification, sub-diffraction light microscopy and CLEM approaches.

Services on this Facility

Service

Image Data Handling

Facility

Bordeaux Imaging Center

↗ Website + Info

Facility: Bordeaux Imaging Center

Head: Daniel Choquet

bic@u-bordeaux.fr
Bordeaux Imaging Center, BIC, Rue Camille Saint-Saëns, Bordeaux, France

The BIC (Bordeaux Imaging Center) offers resources in photonic and electronic imaging, mainly in life, health and plant sciences. It is a core facility identified at the national level as IBISA that gathers 12 highly skilled engineers. It has the ISO9001 label. The different components of the BIC are: PHOTONIC imaging, ELECTRONIC imaging, PLANT imaging. The Bordeaux Imaging Center offers access to the most advanced bio-imaging techniques for fixed and live cell imaging such as video-microscopy, confocal microscopy, multiphoton microscopy, transmission electron microscopy and scanning electron microscopy. The BIC provides a unique set of high-end equipment for super- resolution microscopy such as STED confocal microscopy, FRAP video-microscopy, lifetime imaging FLIM for the measurement of molecular interactions. We also provide access to equipment for sample preparation such as ultra-microtoms, high pressure freeze (HPF) and we can host live samples.

Services on this Facility

Service

Microscopy Technologies

Facility

UTechS PBI – Pasteur

↗ Website + Info

Facility: UTechS PBI – Pasteur

Head: Spencer Shorte

pbi.contact@pasteur.fr
Institut Pasteur, Rue du Docteur Roux, Paris, France

Photonic BioImaging is a Unit of Technology and Service (UTechS) providing optical imaging expertise in life sciences and especially their application in studies on infectious biology.

Our activities include service rendering, training, technology-driven research and technology development. They are highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease. The R&D is founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions and in situ high-content imaging techniques and their application to infection, cell biology, cellular microbiology, and microbiology. We work on novel techniques extrapolating quantitative information on spatiotemporal dynamics in situ and we push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility.

Services on this Facility

Service

HCS & HTP facilities

Service

Microscopy Technologies

Facility

Imagoseine – Institut Jacques Monod

↗ Website + Info

Facility: Imagoseine – Institut Jacques Monod

Coordinator: René-Marc Mège

rene-marc.mege@ijm.fr
Institut Jacques Monod, Paris, France

ImagoSeine imaging facility gathers advanced light microscopy, cytometry and electronic microscopy activities, installed on 450 m² at IJM. Rooms for cells and tissues manipulations are provided to external users. ImagoSeine has been assessed and found to meet the requirements of ISO 9001 by AFNOR Certification. ImagoSeine brings together technologies and expertise in these fields, thanks to the 7 permanent and 2 contractual engineers. The originality of ImagoSeine-IJM is the close collaboration between the imaging facility which have a long experience of making available standard approaches but also new developments to the biological community and a research team involved in the development of state of the art functional imaging technologies (FLIM-FRET; FCCS) and more recently superresolution and non-linear microscopy. The ultimate goal is to provide access and training to these emerging techniques and methods for the realization of competitive biological projects.

Services on this Facility

Service

Microscopy Technologies

Facility

Image Analysis Hub – Institut Pasteur

↗ Website + Info

Facility: Image Analysis Hub – Institut Pasteur

Head: Jean-Yves Tinevez

iah@pasteur.fr
Institut Pasteur, Paris, France

About

The Image Analysis Hub is an open access, equal access core facility committed to offering support in image analysis. Our webpage is: https://research.pasteur.fr/en/team/image-analysis-hub/

What we do.

As part of the C2RT, we strive to ensure the continuity between image acquisition and image analysis. To this end we rely on our expertise in imaging and collaborate with other facilities such as the UTechS-PBI and UTechS-UBI when pertinent. All requests involving images are considered.

 

Our services follow four axes:

1. Offer walk-in support and trainings for questions involving image analysis.

This activity aims at offering to users quick answers to scientific questions involving well-established pipelines, for which a commercial or published tool exists and can be used conveniently. Users can address their question to the facility during open-desk sessions or directly via one-to-one requests. Depending on the effort involved, the solution is derived and proposed onsite, or individual  trainings are scheduled. For general topics, the Hub organises regular courses and workshops, possibly involving external teachers or providers.

For instance, see below for the announcement of our open-desk, organised regularly every two week.

 

2. Build and deploy custom analysis tools for projects requiring special developments.

Research endeavours to address original questions, for which analysis tools might be lacking or incomplete. The Image Analysis Hub aims at creating or implementing novel tools based on existing algorithms to address these questions, using skills in image analysis and software development. More than just developing the analysis tool, this activity often involves deriving a suitable analysis methodology, for which the facility expertise in microscopy and biophysics is key. Engineers work in close collaboration with users within the framework of a scientific project over medium or long durations. For projects whose effort would extend beyond typical facility usage or involve original research work, the project may be directed to the BioImage Analysis unit after a discussion with all parts.

 

3. Maintain an infrastructure for autonomous image analysis. Deal with complex tool deployments.

Data volume and modern analysis techniques may call for a computing power not always present in Pasteur labs. Providing open-access workstations unlock barriers to compute-intensive tools. They also act as the central sharing points for commercial softwares, making them available to the whole campus. Finally, some specialized tools require special deployment efforts, e.g. to make such a tool able to exploit the HPC infrastructure of the Institut Pasteur.

 

4. Develop original and innovative software tools for image analysis, whose scope exceed user projects.

Software development and image analysis skills of the facility can be leveraged to build ambitious software tools shipping innovative technologies. These tools exceed the scope of single projects and address the unarticulated needs of the Pasteur community and their creation is part of the development activity of the facility.

Services on this Facility

Service

Image Data Handling

Facility

IMAG’IC

↗ Website + Info

Facility: IMAG’IC

Head: Pierre Bourdoncle

u1016-imagic@inserm.fr
Institut Cochin, Rue Mechain, Paris, France

The Institut Cochin photonic imaging facility (IMAG’IC), which has the Gis IBiSA, France-BioImaging and ISO 9001 labels, is under the scientific direction of Florence Niedergang and under the responsibility of the engineer Pierre Bourdoucle.
In the center of Paris, the platform has 15 acquisition systems and 3 stations for analysis and image processing, spread over 130 m². Any person working in a public laboratory (EPST, University) or private company can benefit from help or training to become autonomous to work on all microscopes managed by the platform.
In parallel, image restoration by 3D deconvolution, image quantification, database,  3D printing, vibratome sectioning of thick tissues and tissue clarification are also now proposed to our users.

Services on this Facility

Service

Image Data Handling

Service

Microscopy Technologies

Facility

PIBBS @CBS

↗ Website + Info

Facility: PIBBS @CBS

Scientific manager: Christine Doucet

doucet@cbs.cnrs.fr
Centre de Biochimie Structurale, 29 Rue de Navacelles, 34090 Montpellier, France

PIBBS-Optics facility gathers state-of-the-art, custom built setups for various advanced microscopy techniques, such as Single Molecule Localization Microscopy, Multi-Focal Microscopy, smFRET, PIE-FCCS, 2-photons FCS, single particle tracking…

Located in the CBS (Centre de Biochimie Structurale, Montpellier), it offers access to advanced microscopies to the scientific community through local, national and international collaborations.

Users are assisted by dedicated research engineers and scientific coordinators to define the best approach, experimental design, help in data acquisition and analysis.

More details are available on our website:

http://www.cbs.cnrs.fr/index.php/fr/fluorescence

Services on this Facility

Service

Microscopy Technologies

R&D team

Team Montpellier-IPDM-MRI & MARS

↗ Website + Info

R&D team: Team Montpellier-IPDM-MRI & MARS

Head: Marcelo Nollmann

Université Montpellier 1, Montpellier, France

The team is working on a data and image management software. Its main purpose is the management of the data created by the resources of the facility that are driven by a computer (for example microscopes and flow cytometers). All data acquired on the machines of the facility can be uploaded into WIDE. They can then easily be managed on the website, using any computer that has an internet connection. MARS is working on improving a local storage solution and computing for the user’s data.

R&D team

LOB

↗ Website + Info

R&D team: LOB

Head: Emmanuel Beaurepaire

FCS Campus Paris-Saclay, Saint-Aubin, France

Ecole Polytechnique is an internationally attractive institution combining research, teaching and innovation. Laboratory for Optics and Biosciences (LOB) is affiliated with the French Research institutions Inserm and CNRS, and Ecole Polytechnique. The Laboratory employs researchers with expertise in optics, molecular and cellular biology with the aim to explore new concepts and methods. Two LOB research teams are involved in optical imaging developments co-funded by France BioImaging. Access to instruments is currently provided on a collaborative basis and will be extended within the timeframe of the project.
* “Advanced Microscopies and Tissue Physiology” (E. Beaurepaire, M.-C. Schanne-Klein, W. Supatto, G. Gallot, M. Joffre et al). LOB “advanced microscopies” pole is a leading group in nonlinear microscopy of live tissues and small organisms, and develops pioneering approaches based on multimodal multiphoton imaging (multicolor 2PEF, SHG, THG, FWM, CARS), polarimetry, light-sheet illumination (SPIM), photomanipulation, wavefront control, pulse shaping.
* “Nanoemitters and Single Molecule Tracking” (A. Alexandrou, C. Bouzigues, et al). LOB “nanoemitters” team develops innovative assays based on non-blinking lanthanide-ion doped nanoprobes and microfluidics devices to study signaling processes in live cells.

R&D team

MOSAIC Group @Fresnel Institut

↗ Website + Info

R&D team: MOSAIC Group @Fresnel Institut

Head: Hervé Rigneault

herve.rigneault@fresnel.fr
Institut Fresnel, Avenue Escadrille Normandie Niemen, Marseille, France

The Mosaic group of the Fresnel Institute headed by H. Rigneault has been involved for almost a decade in developing dedicated optical instruments for biological imaging. Among other, the team has developed together with CIML the “FCS diffusion law” approach in Fluorescence Correlation Spectroscopy that has been successfully applied to the cell membrane. More recently single particle tracking using multiple targets have proved to be powerful to distinguish confinement zone at the cell membrane and Holographic Optical Tweezers shows potential application into TCR/MHC control. Phase control for micro-manipulation and imaging is an active field of research at Mosaic. Since 2002, the Mosaic group has been involved in coherent Raman microscopy and nonlinear imaging and was the first in France to build and develop a CARS microscope. One of the group world recognized expertise is in polarization resolved fluorescence and nonlinear microscopy that has proved to be able to retrieve molecular order in cell and tissue imaging. The group is now also involved in the development of nonlinear imaging using endoscopes using innovative microstructured optical fibers. Another active field of research is fluorescence enhancement at the nanoscale using metallic nano-antenna that have the ability to perform dynamic analysis on time and spatial scales unreachable with far field optics.

R&D team

Hai-Tao He & Didier Marguet Lab @CIML

↗ Website + Info

R&D team: Hai-Tao He & Didier Marguet Lab @CIML

Head: Didier Marguet

marguet@ciml.univ-mrs.fr
C.I.M.L., Marseille, France

Founded in 1976, the Centre d’Immunologie de Marseille Luminy (CIML) is a research institute internationally renowned in its discipline. From worm to man, from molecule to the whole organism, from physiology to pathology, the CIML addresses, over numerous models and scales, all fields of contemporary immunology: the genesis of different cell populations, their patterns of differentiation and activation, their implication in cancer, infectious and inflammatory diseases and the mechanisms of cell death. At CIML, Marguet team aims at understanding the role of membrane lateral dynamics and organization in T lymphocyte signaling, by analyzing the molecular interaction/association events at high spatial-temporal resolutions. A special emphasize is made at examination of the molecular dynamics in the plasma membrane to initiate and to integrate extracellular stimuli. In this context, Marguet team develops analytical methods based on the combination of single molecular sensitive detection approaches such as fluorescence correlation spectroscopy (FCS) and derivatives, of single particle tracking with optical tools allowing to manipulate the biological samples such as dynamic holographic optical tweezers.

R&D team

Physical approaches to cell dynamics and tissue morphogenesis Team @IBDM

↗ Website + Info

R&D team: Physical approaches to cell dynamics and tissue morphogenesis Team @IBDM

Team Leader: Pierre-François Lenne

pierre-francois.lenne@univ-amu.fr
IBDM, Avenue de Luminy, Marseille, France

The Developmental Biology Institute of Marseille (IBDM) is an international and interdisciplinary research institute oriented towards developmental biology and pathologies. The research activity is at the crossroads of development, neurobiology, cell biology, biophysics and genetics. The general theme of IBDM is to understand how the instructions encoded in the genome are translated to build structures (cells, tissues, organs) that perform specific functions, and how these processes are regulated and integrated in the whole organism. There are links between developmental biology and diseases such as cancer, neurodegenerative and genetic diseases. One of the priorities of IBDM is to foster interdisciplinarity through the integration of new and original approaches that create conceptual and technical interfaces. At IBDM, Lenne team aims at determining how (1) mechanical and (2) physical interactions are organized at cell surfaces in vivo and (3) how these interactions are processed to produce cell and tissue responses. To tackle these questions, we focus on two aspects of tissue morphogenesis, namely cell polarization and force transmission in fields of cells. We are using Drosophila and C. Elegans as systems to address questions (1-2) and question (3), respectively. The originality of our project relies in the integration of both physics and experimental biology to study quantitatively tissue morphogenesis.

R&D team

Bordeaux Nanophotonics Group @LP2N

↗ Website + Info

R&D team: Bordeaux Nanophotonics Group @LP2N

Group Leader: Brahim Lounis

brahim.lounis@u-bordeaux.fr
Institut d’Optique d’Aquitaine, Rue François Mitterrand, 33400, Talence, France

Lounis team

The Nanophotonics group activities focus on two themes: nanophysics and biophotonics. The common denominator of these work is the detection and analysis of properties of individual objects of nanometric sizes. The first axis concerns the study of photophysical properties of nano-objects to optimize their use as original light sources or optical nanoprobes for biological applications. The second axis concerns the development of original spectroscopy approaches to study the properties of these systems under various conditions of temperature (ambient or cryogenic) and environments (solid or liquid solutions or in biological systems). An important outcome of this work is the application of single molecules techniques and superresolution microscopies to address important biological question in collaboration with biologists notably with IINS. In FBI, the aim is to provide our innovative techniques to users of this national infrastructure.

R&D team

IINS

↗ Website + Info

R&D team: IINS

Head: Daniel Choquet

Centre Broca Nouvelle-Aquitaine, Rue Albert Marquet, Bordeaux, France

Choquet team

We have a transdisciplinary approach to study the interplay between the organizational dynamics of the molecular components of glutamatergic synapses and synaptic transmission. We demonstrated that a) trafficking of neuronal molecules such as glutamate receptors is highly dynamic, b) regulations of protein-protein interactions play key roles in the control of this trafficking at different steps, including lateral diffusion, endo and exocytosis, c) modulation of glutamate receptor trafficking has a profound impact on synaptic transmission, including on both short and long term post-synaptic plasticity. By combining chemistry, superresolution imaging and physiology, we aim to unravel the dynamics and physical-chemistry of the macro-molecular complexes of the synapse, the nano-scale organization and dynamics of synaptic proteins and membrane trafficking, and the impact of the dynamic of synapse organization on synaptic physiology. Results obtained in these three axes are constantly integrated to provide a global view of glutamatergic synapse physiology, from nano-scale interactions to function.

Groc team

While early intrinsic factors shape initial neuronal contacts, most fine-scale network wiring is driven by environmental factors and experience. A great challenge for our comprehension of brain development is to identify how different environmentally-driven modulators control the dynamic maturation of neuronal connections and circuit assemblies. The project of the team is to understand how neurotransmitter systems dialogue in the developing brain in order to shape functional networks. We focus our attention on the molecular physiology of glutamatergic (e.g.
NMDA-dependent signaling) and dopaminergic loop and the role of such cross-talk in the developmental encoding of learning and novelty. These fundamental issues will be tackled using a challenging and original set of approaches, including in depth imaging with new probes, gaining insight into the dynamic cross-talk between receptors (e.g. single molecule approach, ensemble measurement, and biochemistry), the synaptic and network physiology (e.g. in vivo
electrophysiology, opto-genetic), and rodent models of early life challenge (e.g. schizophrenia, stress).

Landry team

Chronic pain relies on maladaptive plasticity that induces neuronal sensitization in dorsal spinal networks. The aim of our project is to shed light on basic mechanisms responsible for cellular, and network dysfunctions in the dorsal spinal cord of rodent models of neuropathic pain. Within FBI, we investigate how GABAB inhibition of calcium-dependent intrinsic properties of dorsal horn neurons is hampered in neuropathic conditions by the association of the receptor with various partner proteins. Those interacting proteins impair GABAB inhibition through specific, distinct molecular mechanisms. To this aim we develop an extensive set of approaches for Correlative Light Electron Microscopy.

Naegerl team

The advent of fluorescence microscopy beyond the diffraction limit has opened up huge experimental opportunities to directly image and resolve key physiological signaling events inside single synapses in intact brain tissue, a possibility which was considered a pipedream until recently. Our group is invested in harnessing these exciting technological developments to study synapses in their natural habitat and under realistic conditions, aiming to better understand higher brain function and disorders in terms of the underlying synaptic mechanisms. To this end, we are applying novel superresolution microscopy approaches (STED microscopy), giving us a much more complete and refined view of the dynamic behavior and plasticity of neuronal synapses and their interactions with glia cells inside living brain slices. This approach is complemented by a combination of 2-photon imaging & photoactivation and patch-clamp electrophysiology aided by tools from molecular genetics.

Sibarita team

The “Quantitative Imaging of the Cell” team is a R&D team composed of engineers and researchers coming from various disciplines (microscopy, image processing, image visualization and microfluidics). Together, they aim to develop novel imaging techniques to better understand the living cell activity at high spatial and temporal resolutions, in a high throughput context. The team works in close collaboration with industrial partners (Roper Scientific, Imagine Optics, Nikon, Physik Instrumente, Cytoo, and Molecular Devices). Three main research area are investigated:
-Novel instruments for high-resolution microscopy of living samples, focusing on the development of new instruments for Single Molecule Tracking by Photo-Activation Localization Microscopy (SPTPALM), Local Photoperturbation Microscopy (FRAP/PA), 3D imaging of thick biological specimens (Multi-photon Imaging) and Structure Illumination microscopy (SIM, Compress Sensing).
-Analytical tools for object segmentation, tracking and visualization using CPU and GPU.
-High Content Screening Microscopy to quantify the dynamics of active proteins within living cells, using super-resolution microscopy and micropatterning/microfluidics to control cell geometry and their local chemical environment.

Thoumine/Giannone team

Our aim is to understand the role of adhesion proteins and the actin cytoskeleton in the assembly and turnover of multi-molecular complexes at cell-cell and cell-extracellular matrix contacts. To this aim, we are using a combination of bio-mimetic physico-chemical assays to establish spatiallycontrolled and molecularly-specific adhesive contacts, and high resolution microscopy imaging to probe in real time the dynamics of these multi-protein complexes. We are developing four specific axes:
1.Assembly of macromolecular synaptic complexes triggered by neurexin/neuroligin adhesion
2.Adhesion and actin dynamics in growth cone steering and dendritic spine shape
3.Integrin-dependent adhesion and actin dynamics in migrating cells
4.New imaging methods to probe ligand binding and receptors dynamics in membranes

R&D team

Institut Pasteur – BioImage Analysis Team

↗ Website + Info

R&D team: Institut Pasteur – BioImage Analysis Team

Head: Jean-Christophe Olivo-Marin

jean-christophe.olivo-marin@pasteur.fr
Institut Pasteur, Rue du Docteur Roux, Paris, France

The scientific project of the BioImage Analysis (BIA) unit is to develop image analysis and computer vision tools for the processing and quantification of multi-channel temporal 3D sequences in biological microscopy. The topics are centered about the development of new algorithms for multi-particle tracking, deformable models, mathematical imaging and spatial distribution analysis. The group has produced powerful tools for spot detection and counting in real-time imaging of virus and genes, movement and shape analysis in 3D+t microscopy and cell growth analysis. These methods and algorithms have now been regrouped under the open-source and free platform Icy (http://icy.bioimageanalysis.org), which provides a comprehensive framework for extended reproducible research in bioimage informatics. They have been instrumental for the successful achievement of a large number of collaborative biological projects.

Services on this R&D team

Service

Image Data Handling

R&D team

Inria-Curie SERPICO/STED

↗ Website ↗ Service + Info

R&D team: Inria-Curie SERPICO/STED

Head & CoHead: Charles Kervrann & Jean Salamero

charles.kervrann@inria.fr
Inria Rennes - Bretagne Atlantique, Avenue Général Leclerc, Rennes, France

The Serpico team provides computational methods and mathematical models to automatically extract, organize and model information present in temporal series of images as they are obtained in multidimensional light and cryo-electron microscopy. In the field of membrane traffic, Serpico addresses the following themes in close collaboration with Curie Institute: image superresolution and image denoising to preserve cell integrity (photo-toxicity vs exposure time), information extraction from images and videos in multidimensional microscopy for molecular interaction analysis, spatiotemporal modeling of molecular species and multi-scale architectures, computational simulation and modeling of membrane transport at different scales. In collaboration with UMR 144 and PICT at Institut Curie, the members of Serpico participate in several joint projects (PhD and post-doc supervision, industrial contracts…). They have proposed user-friendly algorithms for processing 3D or 4D data. Other projects are related to instrumentation in microscopy including computational aspects (SERPICO@Mobyle web service) and data management (CID iManage) on the reconstruction and enhancement of images related to subdiffraction light microscopy and multimodal approaches.

Services on this R&D team

Service

Image Data Handling

R&D team

ENS Chemistry

↗ Website + Info

R&D team: ENS Chemistry

Head: Ludovic Jullien

École Normale Supérieure, Rue d'Ulm, Paris, France

ENS Chemistry facility gathers instruments devoted to the characterization and purification of optical probes and actuators by means of various spectrometries (UV-Vis absorption, fluorescence emission) and chromatographies (capillary electrophoresis, HPLC analytical or preparative), installed on 100 m² at ENS Chimie. Access is provided to external users with technical and conceptual assistance from the 8 permanent members involved in FBI. The originality of ENS Chimie is the close collaboration between the characterization facility making available established approaches to the biological community and a research team involved in the development of state of the art chemical technologies for the optical control and reading out of living systems. The ultimate goal is to provide access and training to these emerging techniques and methods for the realization of competitive biological projects.

Services on this R&D team

Service

Bioprobes

R&D team

Physico-Chemistry-Curie: PCC team

↗ Website + Info

R&D team: Physico-Chemistry-Curie: PCC team

Head:

Hôpital Institut Curie, Rue d'Ulm, Paris, France

The team research is focused on developing and applying advanced single molecule imaging tools for cell biology. To this end, the group combines novel optical, computational and labelling methods in order to localize, track, or count individual molecules in their cellular context. It owns several home-built microscopy set-ups, including a multifocus microscope for 3D imaging, a set-up combining FCS and single molecule, two TIRF single molecule microscopes, and a system combining single molecule detection, micropatterning and optogenetic manipulation. The lab is equipped with all the equipments (incubators, hood,…) required for live cell imaging and sample preparation.

R&D team

Mechanisms of DNA segregation and remodelling Team @CBS

↗ Website + Info

R&D team: Mechanisms of DNA segregation and remodelling Team @CBS

Head: Group Leader: Marcelo Nollmann

nollmann@cbs.cnrs.fr
Rue Serge Reggiani, Montpellier, France

We develop single-molecule and advanced microscopy methodologies to investigate the mechanisms underlying DNA segregation and remodeling in live cells.

Our current research projects:

  • DNA organization and segregation in bacteria
  • Eukaryotic DNA structure
  • Molecular Motors
  • Single-molecule & advanced optical microscopies
R&D team

Structure and dynamics of nucleoproteic and membrane assemblies Team @CBS

↗ Website + Info

R&D team: Structure and dynamics of nucleoproteic and membrane assemblies Team @CBS

Group Leaders: Emmanuel Margeat & Pierre-Emmanuel Milhiet

Emmanuel.Margeat@cbs.cnrs.fr
Centre de Biochimie Structurale, Rue de Navacelles, Montpellier, France

Our research aims at characterizing macromolecular complexes governing major biological processes, focusing on transcription regulation, signaling and remodeling of biological membranes. To achieve these goals, we develop, combine and use advanced single molecule biophysical methods (such as atomic force and fluorescence microscopies), as well as DNA nanotechnology.

Research:

Structure and dynamics of nucleoproteic and membrane assemblies

Structure and dynamics of membrane assemblies