Team 4 of the Inserm research unit 1245 aims to characterize the contribution of neurovascular dysfunction in the pathophysiology of neonatal brain lesions while keeping in mind brain immaturity. Thereby, research projects paid attention to molecular, cellular and integrated processes leading to angiogenesis defects and neurodevelopmental consequences such as vessel-associated migration. The team’s research activity is deeply committed into translational research validated by patents and clinical protocols with the objective to develop diagnosis tools and neuroprotection strategies. To reach these objectives, the research team developed mouse perinatal models of white matter injury, in utero gain and loss of functions, and environmental models of fetal toxicity such as FASD. Endothelial and neuro-vascular dysfunctions are apprehended in the developing brains and retinas by imaging approaches (light sheet, FLIM-STED, time-lapse migration, in situ zymography, OCT) on ex vivo tissues (brain organotypic slices, cultured retinas). Image processing and analysis through notably machine learning is developed in partnership with several members of the Normandy FBI node.
The “tPA and neurovascular disorders” team within the UMR-S U1237 – INSERM UNICAEN and GIS Blood and Brain @ Caen-Normandie Institute” (BB@C – INSERM – UNICAEN- CHU CAEN) is focused on a better understanding of the physiopathology of thrombosis/ischemic neurovascular disorders by developing and applying advanced methods (from molecular to multimodal cell and in vivo imaging). Mainly dedicated to live-cell imaging, we will provide access to dynamic imaging, super-resolution microscopy (STED). We developed innovative neuroimaging tools such as biocompatible nanoparticles, multimodal probes to detect vesicles trafficking, autophagy, neuronal activity, inflammation in the field of vascular disorders. Additionally, we used multiphoton imaging to observe in vivo vascular events including inflammation, diapedesis of immune cells within the parenchyma as well as microthrombosis. Functional ultrasound localization microscopy enables us to assess brain-wide neurovascular activity at a microscopic scale.
The team develops original systems to fluorescently label and track DNA (ANCHOR technology – NeoVirtech SAS) in real time at nanoscale resolution to understand physical principles underlying regulation of gene expression and DNA repair, in cellular plasticity and tumorigenesis.
The QuESt imaging facility combines the microscopy resources of the Institut de Génétique et Biologie Moléculaire (IGBMC) and the Laboratoire de Bioimagerie et Pathologies (PIQ). The two laboratories are located on the Illkirch bio-campus, just 10 minutes’ walk from each other. QuESt has held the IBiSA label since 2014. QuEst offers a range of instruments for multi-scale imaging, from the molecule to the whole animal. The ICI (Imaging Center IGBMC) component located at the IGBMC specialises in imaging the dynamic processes of living organisms at the molecular, cellular and whole organism levels. Researchers can analyse, in an integrated manner, their study models at different resolutions, ranging from the finest cellular structures to the complex functioning of organs in vivo. The PIQ (Plateforme d’Imagerie Quantitative – Quantitative Imaging Platform), located in the Faculty of Pharmacy, has a specific focus on quantitative molecular microscopy methods. In addition to commercial instruments, the PIQ-QuESt develops its own state-of-the-art instruments.
Microscopy systems available @QuESt
PIC-STRA aims to support the 10 CRBS research units, as well as external teams from both the academic and private sectors. Opened in October 2020, this 350 m2 imaging platform provides users with around ten imaging systems (stereomicroscopes, wide-field and confocal single- and multiphoton microscopes with super-resolution module) for multi-scale observation, from whole small animals to sub-cellular details. It provides various solutions for the observation of fixed and living samples (videomicroscopy) and is equipped for image processing and analysis (IMARIS, Fiji/ImageJ, ICY, iLastik). The platform is part of the local RISEst network (Réseau d’Imagerie Strasbourg grand Est), is in the process of obtaining CORTECS and IBISA (STrasbourg Centre) accreditation and works closely with the other platforms in the network.
Microscopy systems available @PIC-STRA
The team is a pioneer of Cybergenetics, which aims at controlling biological systems in real time thanks to computercontrolled feedback loops fed by real time image analysis and driven by microscopy automation. We are developing novel software solutions to enable smart microscopy applications.
Expertise of the Team
- Smart microscopy
- Dynamic control of living systems
- Microfluidics for biology
NeurImag is a service and R&D Cell and Tissue imaging core facility of the Institute of Psychiatry and Neuroscience of Paris (IPNP, INSERM U1266 – Université de Paris) since October 2017.
It is divided in :
- Imaging services using photonic microscopy,
- Image analysis service providing « home made analysis solutions » through programming using either Icy, iLastik, ImageJ and/or MatLab.
- Primary cell culture services that provide neuronal cells, organoïds and tissue to solve biological questions through live and super-resolution imaging.
To groundwork our scientific operation, the daily management is divided into three interconnected services (Sample preparation, Imagingand Analysis) under the single management of a scientific director, Lydia Danglot (Inserm, “Chargée de Recherche Hors Classe”, Ph.D. in Neurosciences). Engineers performing technological operations are Sylvain Jeannin for Advanced Imaging, Philippe Bun for Data Analysis service, Laurianne Beynac for in vivo functional imaging and David Boulet for the Sample preparation and Primary Cell Culture service.
List of system and services available
- Deconvolution widefield microscopy
-
Videomicroscopy and slide scanner system
-
Laser scanning confocal microscopy (LSCM) + Gated detectors + White Light Laser
-
Spinning disc confocal system +Fast 2 colors GEMINI moduleSwept-field confocal system
-
Total internal reflection fluorescence microscopy (TIRF)
-
Fluorescence Correlation Spectroscopy (FCS)
-
Fluorescence Cross-Correlation Spectroscopy (FCCS)
-
Fluorescence lifetime Imaging microscopy (FLIM)
-
Fluorescence resonance energy transfer (FRET)
-
Fluorescence recovery after photobleaching (FRAP)
-
2 photon in vivo imaging
-
Light sheet microscopy for live (organoids, Zebrafish) or fixed samples
-
Laser ablation and Photon uncaging
-
Structured Illumination Microscopy (SIM)
-
Photoactivated localization microscopy (PALM)
-
STimulated Emission Depletion microscopy (STED) +/- Fluorescence Correlation Spectroscopy module
-
Stochastical Optical Reconstruction Microscopy (STORM) with 3D biplane module
-
Primary cell culture preparation + optimization on request/demand
-
Sample preparation (transfection, Immunostaining, 3D cultures)
-
Image Data Processing and Analysis +custom made solution
-
Workstations for data analysis (commercial softwares)
The Imaging and Cytometry Platform (PFIC) is one of the 9 scientific Platforms of the UMS AMMICa of Gustave Roussy, one of the first European comprehensive cancer center, located in the south of Paris.
Supporting basic and clinical research programs on cancer, the PFIC is a service, training and R&D center at the interface of basic, translational and clinical research.
The PFIC provides research and industry with an open center of expertise in multi-scale photonic imaging from molecular to tissue, and from animal models to the human. Run by 9 engineers from which 5 dedicated to imaging, the PFIC is organized into specialized units to offer expertise:
- In confocal and multiphoton imaging together with the combined techniques TIRF, live SR, FRAP, FRET, photoconversion, for the study of dynamic interactions at high resolution.
- In complex multidimensional dynamic imaging in living organs, 3D-organoid models, high resolution intravital imaging on small animal and whole animal imaging.
- In transfer of photonics into the clinic (New contrast, NIR and confocal)
- In flow, spectral and mass cytometry and high throughput cell sorting and cloning
- Bioinformatics expertise for data processing and quantification
The PFIC is also strongly involved, with industrial partners, in innovative developments in new optical devices, new fluorescent probes and specific requests for clinical transfer of photon imaging.
Microscopy systems available @PFIC
PIBBS-MARS & AFM comprises two facilities :
- The AFM facility is the only one in the FBI Infrastructure to provide access to state-of-the-art Atomic Force Microscopes, including a custom built high-speed AFM.
- The MARS facility is devoted to cutting-edge optical microscopies such as Single Molecule Localization Microscopy, smFRET, PIE-FCCS, 2-photons FCS, single particle tracking, etc… The MARS R&D division, closely associated to two R&D teams, is in charge of implementing and developing new custom
advanced microscopies (such as STED-FCCS, 2foci-FCS or multifocal microscopy) before their transfer to the facility.
Moreover, the AFM and MARS facilities and staff work closely together to develop and transfer new correlative imaging modalities, such as AFM / Superresolution or AFM / Confocal (FLIM, spFRET).
Users are assisted by dedicated research engineers and scientific coordinators to define the best approach, experimental design, help in data acquisition and analysis.
http://www.cbs.cnrs.fr/index.php/fr/fluorescence
Microscopy systems available @PIBBS
About
The Image Analysis Hub is an open access, equal access core facility committed to offering support in image analysis. Our webpage is: https://research.pasteur.fr/en/team/image-analysis-hub/
What we do.
As part of the C2RT, we strive to ensure the continuity between image acquisition and image analysis. To this end we rely on our expertise in imaging and collaborate with other facilities such as the UTechS-PBI and UTechS-UBI when pertinent. All requests involving images are considered.
Our services follow four axes:
1. Offer walk-in support and trainings for questions involving image analysis.
This activity aims at offering to users quick answers to scientific questions involving well-established pipelines, for which a commercial or published tool exists and can be used conveniently. Users can address their question to the facility during open-desk sessions or directly via one-to-one requests. Depending on the effort involved, the solution is derived and proposed onsite, or individual trainings are scheduled. For general topics, the Hub organises regular courses and workshops, possibly involving external teachers or providers.
For instance, see below for the announcement of our open-desk, organised regularly every two week.
2. Build and deploy custom analysis tools for projects requiring special developments.
Research endeavours to address original questions, for which analysis tools might be lacking or incomplete. The Image Analysis Hub aims at creating or implementing novel tools based on existing algorithms to address these questions, using skills in image analysis and software development. More than just developing the analysis tool, this activity often involves deriving a suitable analysis methodology, for which the facility expertise in microscopy and biophysics is key. Engineers work in close collaboration with users within the framework of a scientific project over medium or long durations. For projects whose effort would extend beyond typical facility usage or involve original research work, the project may be directed to the BioImage Analysis unit after a discussion with all parts.
3. Maintain an infrastructure for autonomous image analysis. Deal with complex tool deployments.
Data volume and modern analysis techniques may call for a computing power not always present in Pasteur labs. Providing open-access workstations unlock barriers to compute-intensive tools. They also act as the central sharing points for commercial softwares, making them available to the whole campus. Finally, some specialized tools require special deployment efforts, e.g. to make such a tool able to exploit the HPC infrastructure of the Institut Pasteur.
4. Develop original and innovative software tools for image analysis, whose scope exceed user projects.
Software development and image analysis skills of the facility can be leveraged to build ambitious software tools shipping innovative technologies. These tools exceed the scope of single projects and address the unarticulated needs of the Pasteur community and their creation is part of the development activity of the facility.
Montpellier Ressources Imagerie (MRI) is a distributed imaging facility present on six sites in Montpellier (www.mri.cnrs.fr). MRI is labeled IBiSA and certified ISO9001-2008 LQRA. It has a staff of 30 engineers and is directed by P. Lemaire (CNRS). MRI manages numerous microscopes (36 photonic and 2 electron microscopes) and 14 analysis workstations, and especially microscopes for long term or short live experiments. MRI offers a complete set of state-of-the-art technologies, from single molecule to small organism imaging. The platform offers and develops 3D-SIM, SPIM, FCS/FCCS, CLEM and 2photons microscopies, and also develops a new service of High Content Screening, with a specific emphasis on gene expression analysis by smFISH techniques. MRI organizes regular training sessions with theoretical presentations and practical sessions about advanced light microscopy and image analysis. Once trained, a user can freely access microscopes on a pay-per-use basis. For the screening facility, the access is evaluated on a project-by-project basis.
Microscopy systems available @MRI
IPAM is a platform for the investigation of small animals. IPAM platform is under ISO9001 certification (starting from June 2014) and a labeled IBiSA facility. IPAM is headed by P. Mollard (CNRS, IGF) and with help of C. Lafont (tech leader). IPAM-IGF is dedicated to cellular in vivo imaging techniques in both anesthetized and vigile animal models. Our latest development involves 2-photon cellular in vivo microscopy with long-range objectives (Mitutoyo, wd: 2cm, x20 magnification, NIR transmission) readily applicable to imaging of deep tissues structures (metabolic brain, pancreatic islets from animal models of diabetes) in anesthetized animal models. Access to IPAM-IGF equipment is based on project selection (http://www.ipam.cnrs.fr/), IPAM-IGF is also an international member of the National Biophotonics and Imaging Platform Ireland (NBIPI, http://www.nbipireland.ie/ ).