PIC-STRA aims to support the 10 CRBS research units, as well as external teams from both the academic and private sectors. Opened in October 2020, this 350 m2 imaging platform provides users with around ten imaging systems (stereomicroscopes, wide-field and confocal single- and multiphoton microscopes with super-resolution module) for multi-scale observation, from whole small animals to sub-cellular details. It provides various solutions for the observation of fixed and living samples (videomicroscopy) and is equipped for image processing and analysis (IMARIS, Fiji/ImageJ, ICY, iLastik). The platform is part of the local RISEst network (Réseau d’Imagerie Strasbourg grand Est), is in the process of obtaining CORTECS and IBISA (STrasbourg Centre) accreditation and works closely with the other platforms in the network.
We focus on the functions of phagocytic cells in normal and infected conditions. We have developed dedicated imaging techniques to monitor with high spatial and temporal resolution the mechanims of capture and degradation by phagocytic cells, their impact on immune responses and their alterations by viral infections, which can lead to the development of bacterial co-infections or uncontrolled inflammation.
Expertise of the Team
- TIRF microscopy with dedicated analysis of phagosome closure assay in three dimensions on living cells
- TFM adapted for living and phagocytosing cells (collaboration with M Balland, LiPhy, Grenoble)
- New FRET probes to analyse receptor clustering on living cells (collaboration with J Fattaccioli, ENS and Institut Pierre Gilles de Gennes, and Jean-Maurice Mallet, ENS Paris, programme 80 PRIME CNRS and ANR 2021-2024).
The imaging and Cytometry facility is part of Généthon, which is a pharmaceutical organization specialized in understanding rare diseases and designing new approaches of therapy, mostly gene transfer. The imaging and Cytometry facility offers services in imaging and cytometry, acquisition and analysis. The facility organizes its activity around 3 main missions: services, training, Research and Development.
The facility interacts with different partners:
- inner departments of Genethon (5 R&D teams, vector production unit, technical development unit ; preclinical evaluation department)
- Genethon belongs itself to a public interest group named Genopole, which gathers Start-up, companies, facilities, institutes and public laboratories, and promote their activity and research. Consequently, the facility has strong interaction with Genopole partners.
The facility is open to any user outside Genopole, and is currently working with the CEA, the institute of myology, the “Institut de Recherche Biomédial des armées (IRBA)” etc.
Scope of activity: The facility concentrates on quantitative imaging of muscles and neuromuscular disease.
Microscopy systems available @ImCy
The Imaging and Cytometry Platform (PFIC) is one of the 9 scientific Platforms of the UMS AMMICa of Gustave Roussy, one of the first European comprehensive cancer center, located in the south of Paris.
Supporting basic and clinical research programs on cancer, the PFIC is a service, training and R&D center at the interface of basic, translational and clinical research.
The PFIC provides research and industry with an open center of expertise in multi-scale photonic imaging from molecular to tissue, and from animal models to the human. Run by 9 engineers from which 5 dedicated to imaging, the PFIC is organized into specialized units to offer expertise:
- In confocal and multiphoton imaging together with the combined techniques TIRF, live SR, FRAP, FRET, photoconversion, for the study of dynamic interactions at high resolution.
- In complex multidimensional dynamic imaging in living organs, 3D-organoid models, high resolution intravital imaging on small animal and whole animal imaging.
- In transfer of photonics into the clinic (New contrast, NIR and confocal)
- In flow, spectral and mass cytometry and high throughput cell sorting and cloning
- Bioinformatics expertise for data processing and quantification
The PFIC is also strongly involved, with industrial partners, in innovative developments in new optical devices, new fluorescent probes and specific requests for clinical transfer of photon imaging.
Microscopy systems available @PFIC
Member of C2RT (Center for Resources and Research in Technology) the Unit for service and technology in ultra-structural bio-imaging (UBI) at Pasteur provides technical and scientific support in electron microscopy, mainly, but not exclusively, to the Pasteur community, analyzing host-pathogen interactions at the ultra-structural level. Our equipment enables us to do state-of-the-art EM for life sciences that includes three dimensional EM by tomography and focused ion beam SEM. The ultrapole is run by ten members (eight engineers and two technicians), each specialized in certain techniques. We put a big emphasis on correlate light- and electron microscopy to study key (rare events) of host-pathogen interactions and we have designed several protocols to combine room temperature LM and cryo-LM with FIB-SEM, cryo-SEM and cryo-tomography.
The UBI also has a small research group focusing on large DNA-viruses. Through this research theme we wish to establish and develop robust, new protocols for various EM-techniques.
The PICsL is located on the Luminy campus on two sites (IBDM and CIML ) that are within walking distance of each other. The PICSL offers a variety of state-of-the art imaging systems (multiphoton, confocal imaging, light sheet microscopy, super-resolution microscopy, electron microscopy). Mainly dedicated to developmental biology and immunology, the PICSL facility provides approaches for dynamic imaging, such as light sheet microscopy, super-resolution for tissue imaging (STED), multiphoton imaging but also more standard techniques such as time lapse imaging and confocal microscopy. Such methods are key to study quantitatively, the development of various animal species, and to decipher the operating mechanisms of the immune system, from molecules to whole organisms, such as Drosophila, C. elegans, Xenopus, chick, mice but also organotypic cultures and more recently organoids. The IBDM site also hosts an electron microscopy (EM) service. The EM service provides the scientific community with the expertise, material and electron microscopes necessary for molecular, cellular and tissue-level imaging by EM. Our service offer comprises the sample preparation with the following methods: negative staining, plastic embedding, immuno-labelling, high pressure freezing, freeze substitution, (cryo)-ultramicrotomy. We routinely use advanced imaging modes such as electron tomography (ET), Scanning Transmission Electron Microscopy (STEM), Scanning Electron Microscopy in « Serial Block-Face » mode, Correlative Light and Electron Microscopy (CLEM).
Microscopy systems available @PICsL
Founded in 1976, the Centre d’Immunologie de Marseille Luminy (CIML) is a research institute internationally renowned in its discipline. From worm to man, from molecule to the whole organism, from physiology to pathology, the CIML addresses, over numerous models and scales, all fields of contemporary immunology: the genesis of different cell populations, their patterns of differentiation and activation, their implication in cancer, infectious and inflammatory diseases and the mechanisms of cell death. At CIML, Marguet team aims at understanding the role of membrane lateral dynamics and organization in T lymphocyte signaling, by analyzing the molecular interaction/association events at high spatial-temporal resolutions. A special emphasize is made at examination of the molecular dynamics in the plasma membrane to initiate and to integrate extracellular stimuli. In this context, Marguet team develops analytical methods based on the combination of single molecular sensitive detection approaches such as fluorescence correlation spectroscopy (FCS) and derivatives, of single particle tracking with optical tools allowing to manipulate the biological samples such as dynamic holographic optical tweezers.
Montpellier Ressources Imagerie (MRI) is a distributed imaging facility present on six sites in Montpellier (www.mri.cnrs.fr). MRI is labeled IBiSA and certified ISO9001-2008 LQRA. It has a staff of 30 engineers and is directed by P. Lemaire (CNRS). MRI manages numerous microscopes (36 photonic and 2 electron microscopes) and 14 analysis workstations, and especially microscopes for long term or short live experiments. MRI offers a complete set of state-of-the-art technologies, from single molecule to small organism imaging. The platform offers and develops 3D-SIM, SPIM, FCS/FCCS, CLEM and 2photons microscopies, and also develops a new service of High Content Screening, with a specific emphasis on gene expression analysis by smFISH techniques. MRI organizes regular training sessions with theoretical presentations and practical sessions about advanced light microscopy and image analysis. Once trained, a user can freely access microscopes on a pay-per-use basis. For the screening facility, the access is evaluated on a project-by-project basis.
Microscopy systems available @MRI
IPAM is a platform for the investigation of small animals. IPAM platform is under ISO9001 certification (starting from June 2014) and a labeled IBiSA facility. IPAM is headed by P. Mollard (CNRS, IGF) and with help of C. Lafont (tech leader). IPAM-IGF is dedicated to cellular in vivo imaging techniques in both anesthetized and vigile animal models. Our latest development involves 2-photon cellular in vivo microscopy with long-range objectives (Mitutoyo, wd: 2cm, x20 magnification, NIR transmission) readily applicable to imaging of deep tissues structures (metabolic brain, pancreatic islets from animal models of diabetes) in anesthetized animal models. Access to IPAM-IGF equipment is based on project selection (http://www.ipam.cnrs.fr/), IPAM-IGF is also an international member of the National Biophotonics and Imaging Platform Ireland (NBIPI, http://www.nbipireland.ie/ ).
Microscopy systems available @IPAM
The Cell and Tissue Imaging Platform (PICT-IBiSA) of the Institut Curie brings together advanced microscopy technologies. Its main objective is to provide researchers in cell biology, development, structural, chemistry and biophysics with imaging approaches at different spatial and dynamic scales ranging from the molecule, to the cell, to the organism in healthy or pathological contexts.
The platform is organized around 3 poles: photonic microscopy, high-content screening, electron microscopy and cryo-electron microscopy. Photonic microscopy extends from dynamic imaging to high resolution. High throughput microscopy allows cellular screening of chemical and siRNA banks. Electron microscopy and cryo-microscopy provide the molecular structure and cellular ultrastructure of biological samples. The platform also offers expertise in data processing and analysis.
Photonic BioImaging is a Unit of Technology and Service (UTechS) providing optical imaging expertise in life sciences and especially their application in studies on infectious biology.
Our activities include service rendering, training, technology-driven research and technology development. They are highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease. The R&D is founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions and in situ high-content imaging techniques and their application to infection, cell biology, cellular microbiology, and microbiology. We work on novel techniques extrapolating quantitative information on spatiotemporal dynamics in situ and we push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility.