IPAM is a platform for the investigation of small animals. IPAM platform is under ISO9001 certification (starting from June 2014) and a labeled IBiSA facility. IPAM is headed by P. Mollard (CNRS, IGF) and with help of C. Lafont (tech leader). IPAM-IGF is dedicated to cellular in vivo imaging techniques in both anesthetized and vigile animal models. Our latest development involves 2-photon cellular in vivo microscopy with long-range objectives (Mitutoyo, wd: 2cm, x20 magnification, NIR transmission) readily applicable to imaging of deep tissues structures (metabolic brain, pancreatic islets from animal models of diabetes) in anesthetized animal models. Access to IPAM-IGF equipment is based on project selection (http://www.ipam.cnrs.fr/), IPAM-IGF is also an international member of the National Biophotonics and Imaging Platform Ireland (NBIPI, http://www.nbipireland.ie/ ).
The Imachem imaging platform provides advanced light and electronic microscopy techniques to IBENS researchers and external users. Imachem is operated by 5 engineers. The main originality of IMACHEM is its ability to undertake innovative technical developments in optical microscopy and to make them available to all users. The first expertise of the platform is super-resolution microscopy, with the development of 3D-PALM using adaptive optic methods. It can perform ultra-structural imaging and single-particle tracking in 3D with a few tens of nanometers of spatial resolution. The second expertise is ultrafast two-photon microscopy for in vivo functional recordings with a temporal resolution in the msec range. A two-photon microscope using acousto-optic scanners for 2D scanning was first designed and installed in the platform. A new system providing ultrafast 3D scanning is currently under development. Additionally, electron microscopy using high-pressure freezing will be developed for correlative light and EM imaging.
Photonic BioImaging is a Unit of Technology and Service (UTechS) providing optical imaging expertise in life sciences and especially their application in studies on infectious biology.
Our activities include service rendering, training, technology-driven research and technology development. They are highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease. The R&D is founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions and in situ high-content imaging techniques and their application to infection, cell biology, cellular microbiology, and microbiology. We work on novel techniques extrapolating quantitative information on spatiotemporal dynamics in situ and we push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility.