Several postdoctoral positions are opened at the Institut Pasteur (Paris, France) to visualize the topological and functional dynamics of small regulatory pieces of DNA, called enhancers, in the animal genome. Successful candidates will join a collaborative and interdisciplinary venture in the newly formed unit Physics of Biological Function of biophysicist Thomas Gregor.

Presentation of the unit and its research topics:

The Unit for the Physics of Biological Function at Institut Pasteur studies the basic physical principles that govern the existence of multicellular life. A core focus of the lab is to understand biological development–the complex process through which an organism grows from a single cell into a differentiated, multicellular organism–from a physics perspective. As such, we formulate and experimentally validate quantitative models that describe how individual cells interact and organize in order to generate complex life forms. Our main interests lie in:

  • multicellular pattern formation
  • transcriptional regulation in the context of development
  • molecular limits to biochemical sensing
  • emergence of collective behaviors in multicellular system
Description of a representative project:

The dynamic organization of the genome in time and space plays a crucial role in the functional specification of a cell. In particular the interplay between multiple distant enhancers and their target gene promoters has critical mechanistic consequences on gene activity patterns during cell differentiation and development. We are developing state-of-the- art high-resolution live imaging techniques to resolve multiple enhancers in space and time to correlate the 3D motion of the DNA polymer with gene activity. The challenge is to develop the right imaging modalities that optimize our need for high temporal and spatial resolution, and to image a large field of view with multiple (≥ 4) colors simultaneously. [For more information see: Chen et al. (2016). Direct visualization of transcriptional activation by physical enhancer-promoter proximity. bioRxiv 099523; doi: https://doi.org/10.1101/099523.]

Expected profile of the candidate:

Candidates will have a strong interest for collaborative and interdisciplinary research. They should have a proven successful track record equipped with a combination of the following skills:

  • live-cell microscopy, single molecule imaging
  • microscope design and implementation
  • hard- and software design for microscope control
  • computational image analysis

Ability to work independently and in collaboration with members of the lab and international collaborators in a dynamic, diverse and multinational group is essential. English is the working language.

Contact: thomas.gregor@pasteur.fr Applications should include a statement of research interests and motivation, a CV, and contact information for three references. Applications will be reviewed as soon as they are received. Funding is available for multiple positions but candidates will be encouraged to apply for independent competitive grants. Long-term funding is possible upon mutual agreement. Alternative projects that match with the overall goals of the unit can be discussed at the interview stage.

The Cell and Tissue Imaging Platform (PICT-IBiSA) of the Institut Curie brings together advanced microscopy technologies. Its main objective is to provide researchers in cell biology, development, structural, chemistry and biophysics with imaging approaches at different spatial and dynamic scales ranging from the molecule, to the cell, to the organism in healthy or pathological contexts.

The platform is organized around 3 poles: photonic microscopy, high-content screening, electron microscopy and cryo-electron microscopy. Photonic microscopy extends from dynamic imaging to high resolution. High throughput microscopy allows cellular screening of chemical and siRNA banks. Electron microscopy and cryo-microscopy provide the molecular structure and cellular ultrastructure of biological samples. The platform also offers expertise in data processing and analysis.

Photonic BioImaging is a Unit of Technology and Service (UTechS) providing optical imaging expertise in life sciences and especially their application in studies on infectious biology.

Our activities include service rendering, training, technology-driven research and technology development. They are highly multi-disciplined, and collaborative, with the mission goal focused on the use of quantitative imaging and analysis to understand the processes of cell/tissue-biology, and their usurpation by infection and disease. The R&D is founded upon the need to develop optical imaging methods that bring new understanding of host-pathogen interactions and in situ high-content imaging techniques and their application to infection, cell biology, cellular microbiology, and microbiology. We work on novel techniques extrapolating quantitative information on spatiotemporal dynamics in situ and we push the limits of existing approaches aiming to enhance their performance thereby broadening their experimental utility.