Several postdoctoral positions are opened at the Institut Pasteur (Paris, France) to visualize the topological and functional dynamics of small regulatory pieces of DNA, called enhancers, in the animal genome. Successful candidates will join a collaborative and interdisciplinary venture in the newly formed unit Physics of Biological Function of biophysicist Thomas Gregor.

Presentation of the unit and its research topics:

The Unit for the Physics of Biological Function at Institut Pasteur studies the basic physical principles that govern the existence of multicellular life. A core focus of the lab is to understand biological development–the complex process through which an organism grows from a single cell into a differentiated, multicellular organism–from a physics perspective. As such, we formulate and experimentally validate quantitative models that describe how individual cells interact and organize in order to generate complex life forms. Our main interests lie in:

  • multicellular pattern formation
  • transcriptional regulation in the context of development
  • molecular limits to biochemical sensing
  • emergence of collective behaviors in multicellular system
Description of a representative project:

The dynamic organization of the genome in time and space plays a crucial role in the functional specification of a cell. In particular the interplay between multiple distant enhancers and their target gene promoters has critical mechanistic consequences on gene activity patterns during cell differentiation and development. We are developing state-of-the- art high-resolution live imaging techniques to resolve multiple enhancers in space and time to correlate the 3D motion of the DNA polymer with gene activity. The challenge is to develop the right imaging modalities that optimize our need for high temporal and spatial resolution, and to image a large field of view with multiple (≥ 4) colors simultaneously. [For more information see: Chen et al. (2016). Direct visualization of transcriptional activation by physical enhancer-promoter proximity. bioRxiv 099523; doi: https://doi.org/10.1101/099523.]

Expected profile of the candidate:

Candidates will have a strong interest for collaborative and interdisciplinary research. They should have a proven successful track record equipped with a combination of the following skills:

  • live-cell microscopy, single molecule imaging
  • microscope design and implementation
  • hard- and software design for microscope control
  • computational image analysis

Ability to work independently and in collaboration with members of the lab and international collaborators in a dynamic, diverse and multinational group is essential. English is the working language.

Contact: thomas.gregor@pasteur.fr Applications should include a statement of research interests and motivation, a CV, and contact information for three references. Applications will be reviewed as soon as they are received. Funding is available for multiple positions but candidates will be encouraged to apply for independent competitive grants. Long-term funding is possible upon mutual agreement. Alternative projects that match with the overall goals of the unit can be discussed at the interview stage.

The newly founded unit Physics of Biological Function of biophysicist Thomas Gregor at Institut Pasteur is seeking to fill two open position at the engineer level to perform microscopy and imaging related research. Candidates with strong interest in interdisciplinary optical microscopy and biophysics research will be expected to build microscopes, run live imaging experiments and execute image processing and analysis routines.

Presentation of the unit and its research topics:

The Unit for the Physics of Biological Function at Institut Pasteur studies the basic physical principles that govern the existence of multicellular life. A core focus of the lab is to understand biological development–the complex process through which an organism grows from a single cell into a differentiated, multicellular organism–from a physics perspective. As such, we formulate and experimentally validate quantitative models that describe how individual cells interact and organize in order to generate complex life forms. Our main interests lie in:

  • multicellular pattern formation
  • transcriptional regulation in the context of development
  • molecular limits to biochemical sensing
  • emergence of collective behaviors in multicellular system
Description of a representative project:

The dynamic organization of the genome in time and space plays a crucial role in the functional specification of a cell. In particular the interplay between multiple distant enhancers and their target gene promoters has critical mechanistic consequences on gene activity patterns during cell differentiation and development. We are developing state-of-the- art high-resolution live imaging techniques to resolve multiple enhancers in space and time to correlate the 3D motion of the DNA polymer with gene activity. The challenge is to develop the right imaging modalities that optimize our need for high temporal and spatial resolution, and to image a large field of view with multiple (≥ 4) colors simultaneously.

Expected profile of the candidate:

Candidates will have a strong interest for collaborative and interdisciplinary research. They should have a proven successful track record equipped with a combination of the following skills:

  • live-cell microscopy, single molecule imaging
  • microscope design and implementation
  • hard- and software design for microscope control
  • computational image analysis

Ability to work independently and in collaboration with members of the lab and international collaborators in a dynamic, diverse and multinational group is essential. English is the working language.

Contact: thomas.gregor@pasteur.fr Applications should include a statement of research interests and motivation, a CV, and contact information for three references. Applications will be reviewed as soon as they are received. Funding is available for multiple positions; long-term funding is possible upon mutual agreement.

BioAxial is a high end technology company which offers the most user-friendly and advanced super-resolution technology to biologists and researchers who focus on live cell imaging. To complement its team, the company is currently seeking a talented, creative and experienced algorithm designer, with a taste for intellectual challenge, and with global image processing responsibilities; this job is based in Paris and offers potential for growth within the organization.

The company develops, manufactures and markets a super-resolution microscope for life sciences and medical research communities. After several years of research and development, BioAxial is launching a breakthrough solution based on Conical Diffraction which boosts the resolution of confocal microscopes.

Job description :

  • Responsible for algorithm design, and its implementation on the instrument
  • In charge of global image processing at BioAxial
  • Reports to CTO

Required skills :

  • Expert knowledge in Algorithm (Matlab), deconvolution, image processing and analysis
  • Port from Matlab to C++ and optionally CUDA – in collaboration with the software engineer
  • High degree (or PhD) in Image Processing and Analysis or Applied Mathematics
  • Minimum 3 years’ experience
  • Proven team work capacity
  • Fluent in English

 

Magali Mondin, Daniel Choquet (CNRS Photothèque)

Fix Contrast, Monochrome LUT
Red:
Brightness: 67, Contrast: 72, Gamma: 1
Green:
Brightness: 50, Contrast: 50, Gamma: 1
Blue:
Brightness: 50, Contrast: 50, Gamma: 1

The BIC (Bordeaux Imaging Center) offers resources in photonic and electronic imaging, mainly in life, health and plant sciences. It is a core facility identified at the national level as IBISA that gathers 12 highly skilled engineers. It has the ISO9001 label. The different components of the BIC are: PHOTONIC imaging, ELECTRONIC imaging, PLANT imaging. The Bordeaux Imaging Center offers access to the most advanced bio-imaging techniques for fixed and live cell imaging such as video-microscopy, confocal microscopy, multiphoton microscopy, transmission electron microscopy and scanning electron microscopy. The BIC provides a unique set of high-end equipment for super- resolution microscopy such as STED confocal microscopy, FRAP video-microscopy, lifetime imaging FLIM for the measurement of molecular interactions. We also provide access to equipment for sample preparation such as ultra-microtoms, high pressure freeze (HPF) and we can host live samples.