Azimuthal beam scanning makes evanescent-wave (EW) excitation isotropic, thereby producing total internal reflection fluorescence (TIRF) images that are evenly lit. However, beam spinning does not fundamentally address the problem of propagating excitation light that is contaminating objective-type TIRF. Far-field excitation depends more on the specific objective than on cell scattering. As a consequence, the excitation impurities in objective-type TIRF are only weakly affected by changes of azimuthal or polar beam angle. These are the main results of the first part of this study (Eliminating unwanted far-field excitation in objective-type TIRF. Pt.1. Identifying sources of nonevanescent excitation light). This second part focuses on exactly where up beam in the illumination system stray light is generated that gives rise to nonevanescent components in TIRF. Using dark-field imaging of scattered excitation light we pinpoint the objective, intermediate lenses and, particularly, the beam scanner as the major sources of stray excitation. We study how adhesion-molecule coating and astrocytes or BON cells grown on the coverslip surface modify the dark-field signal. On flat and weakly scattering cells, most background comes from stray reflections produced far from the sample plane, in the beam scanner and the objective lens. On thick, optically dense cells roughly half of the scatter is generated by the sample itself. We finally show that combining objective-type EW excitation with supercritical-angle fluorescence (SAF) detection efficiently rejects the fluorescence originating from deeper sample regions. We demonstrate that SAF improves the surface selectivity of TIRF, even at shallow penetration depths. The coplanar microscopy scheme presented here merges the benefits of beam spinning EW excitation and SAF detection and provides the conditions for quantitative wide-field imaging of fluorophore dynamics at or near the plasma membrane.

Total internal reflection fluorescence microscopy (TIRFM) achieves subdiffraction axial sectioning by confining fluorophore excitation to a thin layer close to the cell/substrate boundary. However, it is often unknown how thin this light sheet actually is. Particularly in objective-type TIRFM, large deviations from the exponential intensity decay expected for pure evanescence have been reported. Nonevanescent excitation light diminishes the optical sectioning effect, reduces contrast, and renders TIRFM-image quantification uncertain. To identify the sources of this unwanted fluorescence excitation in deeper sample layers, we here combine azimuthal and polar beam scanning (spinning TIRF), atomic force microscopy, and wavefront analysis of beams passing through the objective periphery. Using a variety of intracellular fluorescent labels as well as negative staining experiments to measure cell-induced scattering, we find that azimuthal beam spinning produces TIRFM images that more accurately portray the real fluorophore distribution, but these images are still hampered by far-field excitation. Furthermore, although clearly measureable, cell-induced scattering is not the dominant source of far-field excitation light in objective-type TIRF, at least for most types of weakly scattering cells. It is the microscope illumination optical path that produces a large cell- and beam-angle invariant stray excitation that is insensitive to beam scanning. This instrument-induced glare is produced far from the sample plane, inside the microscope illumination optical path. We identify stray reflections and high-numerical aperture aberrations of the TIRF objective as one important source. This work is accompanied by a companion paper (Pt.2/2).

As a scanning microscope, STimulated Emission Depletion (STED) nanoscopy needs parallelization for fast wide-field imaging. Using well-designed optical lattices for depletion together with wide-field excitation and a fast camera for detection, we achieve large parallelization of STED nanoscopy. Wide field of view super-resolved images are acquired by scanning over a single unit cell of the optical lattice, which can be as small as 290 nm * 290 nm. Optical Lattice STED (OL-STED) imaging is demonstrated with a resolution down to 70 nm at 12.5 frames per second.

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.

The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO-SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.

Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin.

To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode’s surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion.

Angle-resolved linear dichroism is a recent technique that exploits images recorded using an illumination field whose polarization angle is sequentially rotated during acquisition. It allows to retrieve orientation information of the fluorescent molecules, namely the average orientation angle and the amplitude of the fluctuations around this average. In order to boost up the acquisition speed without sacrificing the axial sectioning, we propose to combine a spinning disk confocal excitation scheme together with an electrooptical polarization switching and a camera acquisition. The polarization distortions induced when passing through the spinning disk system have been quantified and effectively compensated. The signal to noise features of the camera have been analyzed in detail so that the precision of the method can be quantified. The technique has been successfully tested on giant unilamellar vesicles and on living cells labeled with different fluorescent lipid probes, DiIC18 and di-8-ANEPPQ. It was able to acquire precise orientation images at full frame rates in the range of a second, ultimately limited by the fluorophore brightness and the camera sensitivity.

BACKGROUND: E-cadherin plays a pivotal role in tissue morphogenesis by forming clusters that support intercellular adhesion and transmit tension. What controls E-cadherin mesoscopic organization in clusters is unclear.

RESULTS: We use 3D superresolution quantitative microscopy in Drosophila embryos to characterize the size distribution of E-cadherin nanometric clusters. The cluster size follows power-law distributions over three orders of magnitude with exponential decay at large cluster sizes. By exploring the predictions of a general theoretical framework including cluster fusion and fission events and recycling of E-cadherin, we identify two distinct active mechanisms setting the cluster-size distribution. Dynamin-dependent endocytosis targets large clusters only, thereby imposing a cutoff size. Moreover, interactions between E-cadherin clusters and actin filaments control the fission in a size-dependent manner.

CONCLUSIONS: E-cadherin clustering depends on key cortical regulators, which provide tunable and local control over E-cadherin organization. Our data provide the foundation for a quantitative understanding of how E-cadherin distribution affects adhesion and might regulate force transmission in vivo.

Individual metal nanoparticles represent an inexpensive and versatile platform to enhance the detection of fluorescent species at biologically relevant concentrations. Here we use fluorescence correlation spectroscopy to quantify the near-field detection volume and average fluorescence enhancement factors set by a single gold nanoparticle. We demonstrate detection volumes down to 270 zeptoliters (three orders of magnitude beyond the diffraction barrier) together with 60-fold enhancement of the fluorescence brightness per molecule.