Fluorescence anisotropy and linear dichroism imaging have been widely used for imaging biomolecular orientational distributions in protein aggregates, fibrillar structures of cells, and cell membranes. However, these techniques do not give access to complete orientational order information in a whole image, because their use is limited to parts of the sample where the average orientation of molecules is known a priori. Fluorescence anisotropy is also highly sensitive to depolarization mechanisms such as those induced by fluorescence energy transfer. A fully excitation-polarization-resolved fluorescence microscopy imaging that relies on the use of a tunable incident polarization and a nonpolarized detection is able to circumvent these limitations. We have developed such a technique in confocal epifluorescence microscopy, giving access to new regions of study in the complex and heterogeneous molecular organization of cell membranes. Using this technique, we demonstrate morphological changes at the subdiffraction scale in labeled COS-7 cell membranes whose cytoskeleton is perturbed. Molecular orientational order is also seen to be affected by cholesterol depletion, reflecting the strong interplay between lipid-packing regions and their nearby cytoskeleton. This noninvasive optical technique can reveal local organization in cell membranes when used as a complement to existing methods such as generalized polarization.

Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time.

We report a step toward scanning endomicroscopy without distal optics. The focusing of the beam at the distal end of a fiber bundle is achieved by imposing a parabolic phase profile across the exit face with the aid of a spatial light modulator. We achieve video-rate images by galvanometric scanning of the phase tilt at the proximal end. The approach is made possible by the bundle, designed to have very low coupling between cores.

We report a first demonstration of two-photon endoscopic imaging with a lensless endoscope. The endoscope probe is a double-clad bundle of single-mode fibers; point excitation and scanning is achieved by coherent combining of femtosecond light pulses propagating in the single-mode fibers; and back-scattered two-photon signal is collected through the multi-mode inner cladding. We demonstrate the two-photon endoscope on a test sample of rhodamine 6G crystals.

We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells.

Langerhans cells (LCs) constitute a network of immune sentinels in the skin epidermis that is seeded during embryogenesis. Whereas the development of LCs has been extensively studied, much less is known about the homeostatic renewal of adult LCs in “nonmanipulated” animals. Here, we present a new multicolor fluorescent fate mapping system and quantification approach to investigate adult LC homeostasis. This novel approach enables us to propose and provide evidence for a model in which the adult epidermal LC network is not formed by mature coequal LCs endowed with proliferative capabilities, but rather constituted by adjacent proliferative units composed of “dividing” LCs and their terminally differentiated daughter cells. Altogether, our results demonstrate the general utility of our novel fate-mapping system to follow cell population dynamics in vivo and to establish an alternative model for LC homeostasis.

BACKGROUND: Autophagy is a fundamental cell biological process whereby eukaryotic cells form membranes in the cytoplasm to sequester diverse intracellular targets. Although significant progress has been made in understanding the origins of autophagosomal organelles, the source of lipids that support autophagic membrane formation remain an important open question.

RESULTS: Here we show that lipid droplets as cellular stores of neutral lipids including triglycerides contribute to autophagic initiation. Lipid droplets, as previously shown, were consumed upon induction of autophagy by starvation. However, inhibition of autophagic maturation by blocking acidification or using dominant negative Atg4(C74A) that prohibits autophagosomal closure did not prevent disappearance of lipid droplets. Thus, lipid droplets continued to be utilized upon induction of autophagy, but not as autophagic substrates in a process referred to as lipophagy. We considered an alternative model whereby lipid droplets were consumed not as a part of lipophagy, but as a potential contributing source to the biogenesis of lipid precursors for nascent autophagosomes. We carried out a screen for a potential link between triglyceride mobilization and autophagy and identified a neutral lipase, PNPLA5, as being required for efficient autophagy. PNPLA5, which localized to lipid droplets, was needed for optimal initiation of autophagy. PNPLA5 was required for autophagy of diverse substrates, including degradation of autophagic adaptors, bulk proteolysis, mitochondrial quantity control, and microbial clearance.

CONCLUSIONS: Lipid droplets contribute to autophagic capacity by enhancing it in a process dependent on PNPLA5. Thus, neutral lipid stores are mobilized during autophagy to support autophagic membrane formation.

We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon, taking place when a laser beam is diffracted through a biaxial crystal. We use conical diffraction in a thin biaxial crystal to generate illumination patterns that are more compact than the classical Gaussian beam, and use them to generate a super-resolution imaging modality. While there already exist several super-resolution modalities, our technology (biaxial super-resolution: BSR) is distinguished by the unique combination of several performance features. Using BSR super-resolution data are achieved using low light illumination significantly less than required for classical confocal imaging, which makes BSR ideal for live-cell, long-term time-lapse super-resolution imaging. Furthermore, no specific sample preparation is required, and any fluorophore can be used. Perhaps most exciting, improved resolution BSR-imaging resolution enhancement can be achieved with any type of objective no matter the magnification, numerical aperture, working distance, or the absence or presence of immersion medium. In this article, we present the first implementation of BSR modality on a commercial confocal microscope. We acquire and analyze validation data, showing high quality super-resolved images of biological objects, and demonstrate the wide applicability of the technology. We report live-cell super-resolution imaging over a long period, and show that the light dose required for super-resolution imaging is far below the threshold likely to generate phototoxicity.

One major question in molecular biology is whether the spatial distribution of observed molecules is random or organized in clusters. Indeed, this analysis gives information about molecules’ interactions and physical interplay with their environment. The standard tool for analyzing molecules’ distribution statistically is the Ripley’s K function, which tests spatial randomness through the computation of its critical quantiles. However, quantiles’ computation is very cumbersome, hindering its use. Here, we present an analytical expression of these quantiles, leading to a fast and robust statistical test, and we derive the characteristic clusters’ size from the maxima of the Ripley’s K function. Subsequently, we analyze the spatial organization of endocytic spots at the cell membrane and we report that clathrin spots are randomly distributed while clathrin-independent spots are organized in clusters with a radius of 2 μm, which suggests distinct physical mechanisms and cellular functions for each pathway.

We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor’s descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts.

PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas.

METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study.

RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet’s membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization.

CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients.

TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes.

Non-linear optical microscopy methods can characterize over time multiple functional properties of engineered tissues during development. Here, we demonstrate how the combined use of third-harmonic generation (THG) and two-photon excited fluorescence (2PEF) imaging can provide direct quantitative biomarkers of adipogenic stem cell differentiation and metabolic state, respectively. Specifically, we imaged over nine weeks silk scaffolds embedded with human mesenchymal stem cells and exposed to either propagation (PM) or adipogenic differentiation media (AM). THG was employed to visualize the formation of lipid droplets. 2PEF was used to assess the metabolic state of the cells through the redox ratio defined based on the endogenous FAD and NADH fluorescence. The redox ratio of cells in the AM scaffold was significantly lower than that in the PM scaffold during week 5 and 9, and correlated with significant increases in lipid-to-cell volume ratio, and number and size of lipid droplets in the AM scaffold. These findings indicate that the decrease in redox ratio during adipogenic differentiation is associated with fatty acid synthesis and lipid accumulation. Our methods therefore enabled us to identify and measure dynamic correlations between lipid droplet formation and cell metabolic state, while providing insight on the spatial heterogeneity of the observed signals.