The Bordeaux node is centered on the Bordeaux Imaging Center core facility that provides service training and R&D in photonic and electronic imaging, surrounded by 9 R&D teams. The strength of the Bordeaux node lie in the strong integration of physics at the LP2N (IOGS), imaging, chemistry and neurobiology at IINS and plant science at LBM. Bordeaux is a flagship center for super resolution imaging, both using photonics and electronic microscopies, applied to Neuroscience and Plant biology.

2018 in numbers

  • projects hosted
  • publications
  • training programs
  • patents since 2011
Actin fireworks© Patrice Mascalchi, Bordeaux Imaging Center and Frédéric Saltel, INSERM U-1053, University of Bordeaux

Technological Innovations

  • Lattice-STED Microscopy (Optics Express, 2014)
  • Single Obj. SPiM (Nat. Methods, 2015)
  • SR-tesseler (Nat. Methods, 2015)
  • SPT in brain slices (Nat. Comm, 2016)
  • Multi-Protein printing (Advanced Mat., 2016)
Sebastien Marais, Daniel Choquet - BIC

Most innovative systems available for booking

  • STED microscopy
  • Ultramicroscopy
  • FLIM spinning-disk microscopy
  • In-vivo multiphoton microscopy
  • MEB-triview
Magali Mondin, Daniel Choquet (CNRS Photothèque)

Tech transfer

  • Software for super-resolution microscopy licensed to Molecular Device
  • Single Objective Spim light sheet technology patented (commercialisation ongoing)
Facility

Bordeaux Imaging Center

↗ Website + Info

Facility: Bordeaux Imaging Center

Head: Daniel Choquet

bic@u-bordeaux.fr
Bordeaux Imaging Center, BIC, Rue Camille Saint-Saëns, Bordeaux, France

The BIC (Bordeaux Imaging Center) offers resources in photonic and electronic imaging, mainly in life, health and plant sciences. It is a core facility identified at the national level as IBISA that gathers 12 highly skilled engineers. It has the ISO9001 label. The different components of the BIC are: PHOTONIC imaging, ELECTRONIC imaging, PLANT imaging. The Bordeaux Imaging Center offers access to the most advanced bio-imaging techniques for fixed and live cell imaging such as video-microscopy, confocal microscopy, multiphoton microscopy, transmission electron microscopy and scanning electron microscopy. The BIC provides a unique set of high-end equipment for super- resolution microscopy such as STED confocal microscopy, FRAP video-microscopy, lifetime imaging FLIM for the measurement of molecular interactions. We also provide access to equipment for sample preparation such as ultra-microtoms, high pressure freeze (HPF) and we can host live samples.

Services on this Facility

Service

Microscopy Technologies

R&D team

Bordeaux Nanophotonics Group @LP2N

↗ Website + Info

R&D team: Bordeaux Nanophotonics Group @LP2N

Group Leader: Brahim Lounis

brahim.lounis@u-bordeaux.fr
Institut d’Optique d’Aquitaine, Rue François Mitterrand, 33400, Talence, France

Lounis team

The Nanophotonics group activities focus on two themes: nanophysics and biophotonics. The common denominator of these work is the detection and analysis of properties of individual objects of nanometric sizes. The first axis concerns the study of photophysical properties of nano-objects to optimize their use as original light sources or optical nanoprobes for biological applications. The second axis concerns the development of original spectroscopy approaches to study the properties of these systems under various conditions of temperature (ambient or cryogenic) and environments (solid or liquid solutions or in biological systems). An important outcome of this work is the application of single molecules techniques and superresolution microscopies to address important biological question in collaboration with biologists notably with IINS. In FBI, the aim is to provide our innovative techniques to users of this national infrastructure.

R&D team

IINS

↗ Website + Info

R&D team: IINS

Head: Daniel Choquet

Centre Broca Nouvelle-Aquitaine, Rue Albert Marquet, Bordeaux, France

Choquet team

We have a transdisciplinary approach to study the interplay between the organizational dynamics of the molecular components of glutamatergic synapses and synaptic transmission. We demonstrated that a) trafficking of neuronal molecules such as glutamate receptors is highly dynamic, b) regulations of protein-protein interactions play key roles in the control of this trafficking at different steps, including lateral diffusion, endo and exocytosis, c) modulation of glutamate receptor trafficking has a profound impact on synaptic transmission, including on both short and long term post-synaptic plasticity. By combining chemistry, superresolution imaging and physiology, we aim to unravel the dynamics and physical-chemistry of the macro-molecular complexes of the synapse, the nano-scale organization and dynamics of synaptic proteins and membrane trafficking, and the impact of the dynamic of synapse organization on synaptic physiology. Results obtained in these three axes are constantly integrated to provide a global view of glutamatergic synapse physiology, from nano-scale interactions to function.

Groc team

While early intrinsic factors shape initial neuronal contacts, most fine-scale network wiring is driven by environmental factors and experience. A great challenge for our comprehension of brain development is to identify how different environmentally-driven modulators control the dynamic maturation of neuronal connections and circuit assemblies. The project of the team is to understand how neurotransmitter systems dialogue in the developing brain in order to shape functional networks. We focus our attention on the molecular physiology of glutamatergic (e.g.
NMDA-dependent signaling) and dopaminergic loop and the role of such cross-talk in the developmental encoding of learning and novelty. These fundamental issues will be tackled using a challenging and original set of approaches, including in depth imaging with new probes, gaining insight into the dynamic cross-talk between receptors (e.g. single molecule approach, ensemble measurement, and biochemistry), the synaptic and network physiology (e.g. in vivo
electrophysiology, opto-genetic), and rodent models of early life challenge (e.g. schizophrenia, stress).

Landry team

Chronic pain relies on maladaptive plasticity that induces neuronal sensitization in dorsal spinal networks. The aim of our project is to shed light on basic mechanisms responsible for cellular, and network dysfunctions in the dorsal spinal cord of rodent models of neuropathic pain. Within FBI, we investigate how GABAB inhibition of calcium-dependent intrinsic properties of dorsal horn neurons is hampered in neuropathic conditions by the association of the receptor with various partner proteins. Those interacting proteins impair GABAB inhibition through specific, distinct molecular mechanisms. To this aim we develop an extensive set of approaches for Correlative Light Electron Microscopy.

Naegerl team

The advent of fluorescence microscopy beyond the diffraction limit has opened up huge experimental opportunities to directly image and resolve key physiological signaling events inside single synapses in intact brain tissue, a possibility which was considered a pipedream until recently. Our group is invested in harnessing these exciting technological developments to study synapses in their natural habitat and under realistic conditions, aiming to better understand higher brain function and disorders in terms of the underlying synaptic mechanisms. To this end, we are applying novel superresolution microscopy approaches (STED microscopy), giving us a much more complete and refined view of the dynamic behavior and plasticity of neuronal synapses and their interactions with glia cells inside living brain slices. This approach is complemented by a combination of 2-photon imaging & photoactivation and patch-clamp electrophysiology aided by tools from molecular genetics.

Sibarita team

The “Quantitative Imaging of the Cell” team is a R&D team composed of engineers and researchers coming from various disciplines (microscopy, image processing, image visualization and microfluidics). Together, they aim to develop novel imaging techniques to better understand the living cell activity at high spatial and temporal resolutions, in a high throughput context. The team works in close collaboration with industrial partners (Roper Scientific, Imagine Optics, Nikon, Physik Instrumente, Cytoo, and Molecular Devices). Three main research area are investigated:
-Novel instruments for high-resolution microscopy of living samples, focusing on the development of new instruments for Single Molecule Tracking by Photo-Activation Localization Microscopy (SPTPALM), Local Photoperturbation Microscopy (FRAP/PA), 3D imaging of thick biological specimens (Multi-photon Imaging) and Structure Illumination microscopy (SIM, Compress Sensing).
-Analytical tools for object segmentation, tracking and visualization using CPU and GPU.
-High Content Screening Microscopy to quantify the dynamics of active proteins within living cells, using super-resolution microscopy and micropatterning/microfluidics to control cell geometry and their local chemical environment.

Thoumine/Giannone team

Our aim is to understand the role of adhesion proteins and the actin cytoskeleton in the assembly and turnover of multi-molecular complexes at cell-cell and cell-extracellular matrix contacts. To this aim, we are using a combination of bio-mimetic physico-chemical assays to establish spatiallycontrolled and molecularly-specific adhesive contacts, and high resolution microscopy imaging to probe in real time the dynamics of these multi-protein complexes. We are developing four specific axes:
1.Assembly of macromolecular synaptic complexes triggered by neurexin/neuroligin adhesion
2.Adhesion and actin dynamics in growth cone steering and dendritic spine shape
3.Integrin-dependent adhesion and actin dynamics in migrating cells
4.New imaging methods to probe ligand binding and receptors dynamics in membranes

Key publications