The school is dedicated to teaching the basics and wider context necessary to understand recent advances and current challenges in biological and medical imaging. Cutting-edge techniques using a wide range of image-formation mechanisms — including magnetic resonance imaging, positron emission tomography, infrared and optical microscopy, electron microscopy and X-ray imaging — will be discussed, with a focus on multimodal and multiscale imaging methods, together with supporting technologies such as computer-aided image analysis and modelling.

The school will provide different tracks for participants with a background in life sciences and physical sciences, respectively. Furthermore, specialized lectures will address current topics in biological and medical imaging. The students will have lectures in the morning and practical sessions in the afternoon (either hands-on lab work or lab demonstrations, depending on the field). The program will be rounded off with a practical day and an industry day.

The school follows a challenging and demanding schedule. It addresses excellent MSc and PhD students as well as scientists from industry with background in biology, chemistry, computer science, engineering, mathematics, medical science or physics. We plan to admit about 60 participants (internally and from abroad).

Admission will be decided based on the applicant’s curriculum vitae, a statement of purpose and applicant’s references. Students who have not yet started a PhD program may apply for a stipend. Interested students are kindly asked to submit their application pack including their study grades and reference letter on our homepage (www.excite.ethz.ch)

The application deadline is Monday, 23 April 2018. The notification of acceptance will be given by 25 May 2018.

Further information can be found here: www.excite.ethz.ch

This conference is organized by the “Réseau d’Imagerie Cellulaire Paris-Saclay”.

The two most common techniques of vibrational micro-spectroscopy are infrared (IR) and Raman. These two sophisticated tools enable to visualize the inherent vibrational spectra of biochemical constituents of a cell or a tissue. Therefore, IR and Raman microscopy provide the specific and distinct “fingerprint” spectrum of each cell and offer the powerful possibility of high contrast images without any external labeling.

Recently, significant developments of these approaches provided a better access of these two techniques by the biologist community. Currently, IR and Raman microscopy are used for tissues, biopsies, animal and plant analyses in order to visualize proteins (C-H3 bonds), lipids (C-H2 bonds), water (O-H bonds), membranes, myelin, chromophores such as flavins, etc …

This is a free event.

Registration is mandatory at : specvib@gmail.com

Public

Biologists, doctors, postdoc, engineers, students

Speakers

Christophe SANDT (Synchrotron Soleil)

Alexandre DAZZI (LCP Orsay, UPSud)

Marie-Françoise DEVAUX (INRA Angers-Nantes)

Olivier PIOT (BioSpect / Univ Reims)

How to reach the conference

https://goo.gl/maps/JJoFw7ctc972

More information

www.ric-paris-saclay.fr

Contact

larbi.amazit@u-psud.fr / philippe.leclerc@inserm.fr

(This training session will be taught in French only).

Formation CNRS
Objectifs :
 Apprendre les fondamentaux de la microscopie photonique
 Acquérir les bonnes pratiques
 Découvrir les techniques avancées
 Acquérir de l’autonomie sur un ensemble de techniques de microscopie fréquemment rencontrées dans les laboratoires de biologie

Inscription avant le 9 octobre 2017 via le portail de formation du CNRS, Rubrique “Connaissances scientifiques” : https://admin.core-cloud.net/ou/SMUT/PFM/Lists/OFFRE%20REGIONALE%20IdF/Programme%202017.aspx

Abstract submission deadline extended to May 26th

After 14 years, the Multinational Congress on Microscopy will again be organized in Croatia on September 24-29, 2017. In its 13th issue, the traditional conference series is returning to Istria, this time to the beautiful coastal town of Rovinj.

MCM2017 is jointly organized by 8 societies: Austrian Society for Electron Microscopy (ASEM), Croatian Microscopy Society (CMS), Czechoslovak Microscopy Society (CSMS), Hungarian Society for Microscopy (HSM), Italian Society of Microscopical Sciences (SISM), Serbian Society for Microscopy (SSM), Slovenian Society for Microscopy (SDM) and Turkish Society for Electron Microscopy (TEMD).

MCM2017 will bring together leading experts and young researchers that develop microscopy methods and apply them in the fields of life and material sciences. It will also include a trade exhibition in order to encourage exchange between the producers of microscopy-related equipment and researchers.

MCM conferences have always been an excellent opportunity for microscopists to exchange ideas and experience and to establish new cooperations and joint projects. Our aim is to provide an optimal balance between talks given by world-renowned scientists and a possibility for talented young scientists to introduce themselves to an international audience.

We believe this conference will be a highly rewarding professional and networking experience for all. Additionally, we encourage you to take this opportunity to explore the highlights of coastal town Rovinj with its beautiful surroundings and to experience the unique local blend of nature, culture and gastronomy.

The BIC is setting up in a brand new space

In the last weeks of October 2016, the BIC has settled in a brand new building, constructed by the Regional Council of Aquitaine as part of the Neurocampus project. This building, of around 13 000 m2, is shared with the Interdisciplinary Institute for Neuroscience (IINS) and the Institute for Neurodegenerative Disorders (IMN). This building, constructed in two years, cost 47 M€ and is part of a large project to develop Neuroscience and imaging in Aquitaine. The new building is conveniently located and connected by footbridges between the Magendie Neuroscience center and the Center for functional genomics (CGFB) that hosts several core facilities.

buildingbic1

In total, the BIC will occupy 1000 m2, split between the CGFB and the new building. The major part in the new building is dedicated to photonic microscopy. Electron microscopy instruments, including two brand new ones coming in 2017, will be dispatched between the CGFB and Neurocampus building. In these new spaces, users have access to a culture room and also a room with analysis stations. Other rooms are dedicated to each kind of microscopy (one room for live cells imaging, one room for multiphoton, one room for confocal, one room for new scanning electron microscope etc…). Special rooms are dedicated to host R&D projects as well as confidential collaborations with industry.

Development of training capacities at the BIC – joint projects with the Cajal School of Neuroscience

buildingbic2

The BIC has engaged for many years in active training programs for imaging at all levels (beginners to advanced training) for local, national and transnational users. The BIC personnel also participates extensively to various theoretical and hands on training/showcase activities in France and abroad (MifoBio, NeuBias, etc…). Within the strategy to develop the BIC-FBI training, we are engaging a partnership with the Cajal Advanced Neuroscience Training Program to develop special ima ging training for Neuroscience. The Cajal school is a European FENS and IBRO initiative in partnership with Bordeaux Neurocampus and the Champalimaud Foundation, which offers state-of-the-art hands-on training courses in neuroscience.

Construction of a light sheet microscope for super resolution imaging inside living samples

Fast and non-damaging imaging of single molecules inside live organisms is essential to study physiologically relevant biochemical mechanisms occurring at the subcellular level. For example, the dynamic organization of transmitter receptors at the membrane of excitatory neurons should, ideally, be studied in vivo in the brain of animal models. Unfortunately super resolution techniques such as PALM1, STORM23 and uPAINT4 are mostly restricted to the sample external surfaces and are unable to image inside live samples.

For these reasons the Bordeaux Imaging Center is developing a new light sheet microscope specially dedicated to image single molecules into live samples. Light sheet fluorescence microscopy (LSFM) is recognized as the method of choice to image thick live samples. Compared to other fluorescence imaging modalities such as wide field, confocal, structured illumination, two-photon or STED, LSFM strongly reduces out of focus fluorescence, decreases photobleaching and phototoxicity, and improves temporal resolution. Among the numerous technical implementations of LSFM 5, we decided to build a lattice light sheet microscope (LLS) because it has been specifically designed to perform super resolution imaging in thick live samples 6. Indeed In LLS the illumination beam is shaped by a spatial light modulator (SLM) to produce a < 1 µm thick excitation plane over a length of  > 50 µm at the sample. A 1.1 NA detection objective ensures efficient light collection required for high localization precision. Illumination and detection objectives are both long working distance and water immersion, thus allowing observation of live samples up to 5 mm in diameter. (Fig 1 A)

Our LLS microscope is mostly based on the documentation freely and kindly shared by Eric Betzig’ group (HHMI Janelia Farms, USA).

fig1
Photo Credits: Mathieu Ducros

Fig 1. (A) The sample is placed at the intersection of the excitation and detection objective optic axes in a temperature controlled perfusion chamber. It is held at the tip of motorized arm on a 5 mm diameter cover slip (from 6). (B) The LLS microscope under construction in June 2016. (C) In blue and green the optical path of the excitation and detection beams respectively (from 6). A higher efficiency SLM, higher QE camera should improve the light budget compared to the original specifications. In addition, a targeted laser beam (red) will allow precise photo-conversion of light sensitive molecules.

We made a few modifications compared to the original specifications of the LLS as described in 6 : our microscope will be equipped with a laser combiner including 4 high power lasers at 405 nm (300mW), 488 nm (1 W), 560 nm (2 W), 642 nm (2W), a higher efficiency SLM (Fourth Dimension DD QXGA) and a sCMOS camera with improved quantum efficiency (Hamamatsu ORCA Flash V2). These improvements should mitigate the weak throughput of the LLS beam path, and, in turn, improve molecule localization precision and/or time resolution. In addition, a targeted photostimulation beam will be coupled through the detection objective to photo stimulate or photoconvert with a high spatial and temporal resolution photosensitive molecules.

STORM, PALM and PAINT imaging modalities will be fully compatible with the constructed LLS.

The microscope construction by Mathieu Ducros, INSERM research Engineer on the BIC, started in April (Fig 1B). First images are expected by the end of 2016. Once our LLS is fully operational and running, it will be accessible to all BIC users under the supervision of a local engineer.

For this project we are supported financially by the GIS IBiSA, LABEX brain and FBI.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
  2. Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
  3. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).
  4. Giannone, G. et al. Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys. J. 99, 1303–1310 (2010).
  5. Santi, P. a. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59, 129–138 (2011).
  6. Chen, B.-C. et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science (80-. ). (2014). doi:10.1126/science.1257998

 

Bordeaux Imaging Center: http://www.bic.u-bordeaux.fr/

UMS 3420 CNRS-Université de Bordeaux, US4 INSERM

Contact: bic[at]u-bordeaux.fr

Photo Credits: www.bordeaux-neurocampus.fr